Summary
Building science is the science and technology-driven collection of knowledge in order to provide better indoor environmental quality (IEQ), energy-efficient built environments, and occupant comfort and satisfaction. Building physics, architectural science, and applied physics are terms used for the knowledge domain that overlaps with building science. In building science, the methods used in natural and hard sciences are widely applied, which may include controlled and quasi-experiments, randomized control, physical measurements, remote sensing, and simulations. On the other hand, methods from social and soft sciences, such as case study, interviews & focus group, observational method, surveys, and experience sampling, are also widely used in building science to understand occupant satisfaction, comfort, and experiences by acquiring qualitative data. One of the recent trends in building science is a combination of the two different methods. For instance, it is widely known that occupants’ thermal sensation and comfort may vary depending on their sex, age, emotion, experiences, etc. even in the same indoor environment. Despite the advancement in data extraction and collection technology in building science, objective measurements alone can hardly represent occupants' state of mind such as comfort and preference. Therefore, researchers are trying to measure both physical contexts and understand human responses to figure out complex interrelationships. Building science traditionally includes the study of indoor thermal environment, indoor acoustic environment, indoor light environment, indoor air quality, and building resource use, including energy and building material use. These areas are studied in terms of physical principles, relationship to building occupant health, comfort, and productivity, and how they can be controlled by the building envelope and electrical and mechanical systems. The National Institute of Building Sciences (NIBS) additionally includes the areas of building information modeling, building commissioning, fire protection engineering, seismic design and resilient design within its scope.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (32)
ENG-445: Energy and comfort in buildings
The course presents the fundamentals of energy demand in buildings while emphasizing the need for the comfort and well-being of occupants. In addition, prioritizations and trade-offs between energy an
AR-442: Comfort and architecture: sustainable strategies
This class offers an overview about comfort evaluations in architectural design and suggests passive and low-energy strategies suited to ensure the highest possible indoor environment quality for buil
CIVIL-460: Indoor air quality and ventilation
This course provides a fundamental knowledge of an emerging area - indoor air quality. This course also gives an overview of ventilation strategies and airflow distribution strategies tuned to ensure
Show more
Related publications (184)