A multi-core processor is a microprocessor on a single integrated circuit with two or more separate processing units, called cores, each of which reads and executes program instructions. The instructions are ordinary CPU instructions (such as add, move data, and branch) but the single processor can run instructions on separate cores at the same time, increasing overall speed for programs that support multithreading or other parallel computing techniques. Manufacturers typically integrate the cores onto a single integrated circuit die (known as a chip multiprocessor or CMP) or onto multiple dies in a single chip package. The microprocessors currently used in almost all personal computers are multi-core. A multi-core processor implements multiprocessing in a single physical package. Designers may couple cores in a multi-core device tightly or loosely. For example, cores may or may not share caches, and they may implement message passing or shared-memory inter-core communication methods. Common network topologies used to interconnect cores include bus, ring, two-dimensional mesh, and crossbar. Homogeneous multi-core systems include only identical cores; heterogeneous multi-core systems have cores that are not identical (e.g. big.LITTLE have heterogeneous cores that share the same instruction set, while AMD Accelerated Processing Units have cores that do not share the same instruction set). Just as with single-processor systems, cores in multi-core systems may implement architectures such as VLIW, superscalar, vector, or multithreading. Multi-core processors are widely used across many application domains, including general-purpose, embedded, network, digital signal processing (DSP), and graphics (GPU). Core count goes up to even dozens, and for specialized chips over 10,000, and in supercomputers (i.e. clusters of chips) the count can go over 10 million (and in one case up to 20 million processing elements total in addition to host processors).

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (30)
FIN-525: Financial big data
The course introduces modern methods to acquire, clean, and analyze large quantities of financial data efficiently. The second part expands on how to apply these techniques and robust statistics to fi
CS-307: Introduction to multiprocessor architecture
Multiprocessors are a core component in all types of computing infrastructure, from phones to datacenters. This course will build on the prerequisites of processor design and concurrency to introduce
EE-310: Microprogrammed Embedded Systems
L'étudiant comprendra les architectures des systèmes embarqués microprogrammés, les architectures des microprocesseurs, hiérarchie de mémoire et les différents périphériques de Entrée/Sortie (E/S) inc
Show more
Related lectures (107)
On-Board Computers: Microprocessors and Microcontrollers
Covers spacecraft avionics systems, architectures, and processors, focusing on on-board computers and microprocessors.
Radiation Hard Microelectronics
Explores radiation-hard microelectronics design, rad-hard ASIC libraries, and mitigation techniques for single-event effects.
Telecommand System Requirements
Covers the requirements and functions of a telecommand system in spacecraft, including uploading programs and controlling spacecraft operations.
Show more
Related publications (748)

Accelerator-driven Data Arrangement to Minimize Transformers Run-time on Multi-core Architectures

David Atienza Alonso, Giovanni Ansaloni, Alireza Amirshahi

The increasing complexity of transformer models in artificial intelligence expands their computational costs, memory usage, and energy consumption. Hardware acceleration tackles the ensuing challenges by designing processors and accelerators tailored for t ...
2024

Imaging sensor device using an array of single-photon avalanche diode photodetectors

Edoardo Charbon, Andrei Ardelean

The invention relates to an Imaging sensor device in a stacked arrangement comprising: - a pixel array tier comprising a plurality of pixel segments each having a plurality of pixels for photon detection each providing a digital pixel output; - a processin ...
2024

Highly Parallel RTL Simulation

Verification and testing of hardware heavily relies on cycle-accurate simulation of RTL.As single-processor performance is growing only slowly, conventional, single-threaded RTL simulation is becoming impractical for increasingly complex chip designs and s ...
EPFL2024
Show more
Related concepts (105)
Blackfin
The Blackfin is a family of 16-/32-bit microprocessors developed, manufactured and marketed by Analog Devices. The processors have built-in, fixed-point digital signal processor (DSP) functionality supplied by 16-bit multiply–accumulates (MACs), accompanied on-chip by a microcontroller. It was designed for a unified low-power processor architecture that can run operating systems while simultaneously handling complex numeric tasks such as real-time H.264 video encoding.
Parallel computing
Parallel computing is a type of computation in which many calculations or processes are carried out simultaneously. Large problems can often be divided into smaller ones, which can then be solved at the same time. There are several different forms of parallel computing: bit-level, instruction-level, data, and task parallelism. Parallelism has long been employed in high-performance computing, but has gained broader interest due to the physical constraints preventing frequency scaling.
Hyper-threading
Hyper-threading (officially called Hyper-Threading Technology or HT Technology and abbreviated as HTT or HT) is Intel's proprietary simultaneous multithreading (SMT) implementation used to improve parallelization of computations (doing multiple tasks at once) performed on x86 microprocessors. It was introduced on Xeon server processors in February 2002 and on Pentium 4 desktop processors in November 2002. Since then, Intel has included this technology in Itanium, Atom, and Core 'i' Series CPUs, among others.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.