In geometry, the elongated dodecahedron, extended rhombic dodecahedron, rhombo-hexagonal dodecahedron or hexarhombic dodecahedron is a convex dodecahedron with 8 rhombic and 4 hexagonal faces. The hexagons can be made equilateral, or regular depending on the shape of the rhombi. It can be seen as constructed from a rhombic dodecahedron elongated by a square prism.
Along with the rhombic dodecahedron, it is a space-filling polyhedron, one of the five types of parallelohedron identified by Evgraf Fedorov that tile space face-to-face by translations. It has 5 sets of parallel edges, called zones or belts.
It can tesselate all space by translations.
It is the Wigner–Seitz cell for certain body-centered tetragonal lattices.
This is related to the rhombic dodecahedral honeycomb with an elongation of zero. Projected normal to the elongation direction, the honeycomb looks like a square tiling with the rhombi projected into squares.
The expanded dodecahedra can be distorted into cubic volumes, with the honeycomb as a half-offset stacking of cubes. It can also be made concave by adjusting the 8 corners downward by the same amount as the centers are moved up.
The elongated dodecahedron can be constructed as a contraction of a uniform truncated octahedron, where square faces are reduced to single edges and regular hexagonal faces are reduced to 60 degree rhombic faces (or pairs of equilateral triangles). This construction alternates square and rhombi on the 4-valence vertices, and has half the symmetry, D2h symmetry, order 8.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In geometry, a plesiohedron is a special kind of space-filling polyhedron, defined as the Voronoi cell of a symmetric Delone set. Three-dimensional Euclidean space can be completely filled by copies of any one of these shapes, with no overlaps. The resulting honeycomb will have symmetries that take any copy of the plesiohedron to any other copy. The plesiohedra include such well-known shapes as the cube, hexagonal prism, rhombic dodecahedron, and truncated octahedron. The largest number of faces that a plesiohedron can have is 38.
In geometry, a parallelohedron is a polyhedron that can be translated without rotations in 3-dimensional Euclidean space to fill space with a honeycomb in which all copies of the polyhedron meet face-to-face. There are five types of parallelohedron, first identified by Evgraf Fedorov in 1885 in his studies of crystallographic systems: the cube, hexagonal prism, rhombic dodecahedron, elongated dodecahedron, and truncated octahedron. Every parallelohedron is a zonohedron, a centrally symmetric polyhedron with centrally symmetric faces.
In geometry, the trapezo-rhombic dodecahedron or rhombo-trapezoidal dodecahedron is a convex dodecahedron with 6 rhombic and 6 trapezoidal faces. It has D_3h symmetry. A concave form can be constructed with an identical net, seen as excavating trigonal trapezohedra from the top and bottom. It is also called the trapezoidal dodecahedron. This polyhedron could be constructed by taking a tall uniform hexagonal prism, and making 3 angled cuts on the top and bottom.
New fabrication technologies have significantly decreased the cost of fabrication of shapes with highly complex geometric structure. One important application of complex fine-scale geometric structures is to create variable effective elastic material prope ...
Bowl-shaped pi-conjugated compounds offer the possibility to study curvature-dependent host-guest interactions and chemical reactivity in ideal model systems. For surface-adsorbed pi bowls, however, only conformations with the bowl opening pointing away fr ...
Discusses assembling neural networks by defining space and populating it with neurons, emphasizing the challenges and strategies for accurate morphologies and volume information.
Although the grain refinement of yellow gold alloys with Jr has been used in industry and known for nearly half a century, the basic mechanism is still unknown. The present contribution shows that the mechanism is the same as that evidenced recently in Al- ...