Summary
The XNOR gate (sometimes ENOR, EXNOR or NXOR and pronounced as Exclusive NOR) is a digital logic gate whose function is the logical complement of the Exclusive OR (XOR) gate. It is equivalent to the logical connective () from mathematical logic, also known as the material biconditional. The two-input version implements logical equality, behaving according to the truth table to the right, and hence the gate is sometimes called an "equivalence gate". A high output (1) results if both of the inputs to the gate are the same. If one but not both inputs are high (1), a low output (0) results. The algebraic notation used to represent the XNOR operation is . The algebraic expressions and both represent the XNOR gate with inputs A and B. There are two symbols for XNOR gates: one with distinctive shape and one with rectangular shape and label. Both symbols for the XNOR gate are that of the XOR gate with an added inversion bubble. XNOR gates are represented in most TTL and CMOS IC families. The standard 4000 series CMOS IC is the 4077, and the TTL IC is the 74266 (although an open-collector implementation). Both include four independent, two-input, XNOR gates. The (now obsolete) 74S135 implemented four two-input XOR/XNOR gates or two three-input XNOR gates. Both the TTL 74LS implementation, the 74LS266, as well as the CMOS gates (CD4077, 74HC4077 and 74HC266 and so on) are available from most semiconductor manufacturers such as Texas Instruments or NXP, etc. They are usually available in both through-hole DIP and SOIC formats (SOIC-14, SOC-14 or TSSOP-14). Datasheets are readily available in most datasheet databases and suppliers. Both the 4077 and 74x266 devices (SN74LS266, 74HC266, 74266, etc.) have the same pinout diagram, as follows: Pinout diagram of the 74HC266N, 74LS266 and CD4077 quad XNOR plastic dual in-line package 14-pin package (PDIP-14) ICs. If a specific type of gate is not available, a circuit that implements the same function can be constructed from other available gates.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.