An electrolytic cell is an electrochemical cell that utilizes an external source of electrical energy to force a chemical reaction that would otherwise not occur. The external energy source is a voltage applied between the cell′s two electrodes; an anode (positively charged electrode) and a cathode (negatively charged electrode), which are immersed in an electrolyte solution. This is in contrast to a galvanic cell, which itself is a source of electrical energy and the foundation of a battery. The net reaction taking place in a galvanic cell is a spontaneous reaction, i.e, the Gibbs free energy remains -ve, while the net reaction taking place in an electrolytic cell is the reverse of this spontaneous reaction, i.e, the Gibbs free energy is +ve.
In an electrolytic cell, a current passes through the cell by an external voltage, causing a non-spontaneous chemical reaction to proceed. In a galvanic cell, the progress of a spontaneous chemical reaction causes an electric current to flow. An equilibrium electrochemical cell exists in the state between an electrolytic cell and a galvanic cell. The tendency of a spontaneous reaction to push a current through the external circuit is exactly balanced by a counter-electromotive force so that no current flows. If this counter-electromotive force is increased, the cell becomes an electrolytic cell, and if it is decreased, the cell becomes a galvanic cell.
An electrolytic cell has three components: an electrolyte and two electrodes (a cathode and an anode). The electrolyte is usually a solution of water or other solvents in which ions are dissolved. Molten salts such as sodium chloride can also function as electrolytes. When driven by an external voltage applied to the electrodes, the ions in the electrolyte are attracted to an electrode with the opposite charge, where charge-transferring (also called faradaic or redox) reactions can take place. Only with an external electrical potential (i.e., voltage) of correct polarity and sufficient magnitude can an electrolytic cell decompose a normally stable, or inert chemical compound in the solution.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This class is intended to make students familiar with dye sensitized solar cells. It presents the principle of design and rationalize the influence of various components on the power conversion effici
This course builds upon the underlying theory in thermodynamics, reaction kinetics, and transport and applies these methods to electrosynthesis, fuel cell, and battery applications. Special focus is p
Ce cours permet l'acquisition des notions essentielles relatives à la structure de la matière, aux équilibres et à la réactivité chimique en liaison avec les propriétés mécaniques, thermiques, électri
A battery is a source of electric power consisting of one or more electrochemical cells with external connections for powering electrical devices. When a battery is supplying power, its positive terminal is the cathode and its negative terminal is the anode. The terminal marked negative is the source of electrons that will flow through an external electric circuit to the positive terminal. When a battery is connected to an external electric load, a redox reaction converts high-energy reactants to lower-energy products, and the free-energy difference is delivered to the external circuit as electrical energy.
In electrochemistry, standard electrode potential , or , is a measure of the reducing power of any element or compound. The IUPAC "Gold Book" defines it as: "the value of the standard emf (electromotive force) of a cell in which molecular hydrogen under standard pressure is oxidized to solvated protons at the left-hand electrode". The basis for an electrochemical cell, such as the galvanic cell, is always a redox reaction which can be broken down into two half-reactions: oxidation at anode (loss of electron) and reduction at cathode (gain of electron).
A galvanic cell or voltaic cell, named after the scientists Luigi Galvani and Alessandro Volta, respectively, is an electrochemical cell in which an electric current is generated from spontaneous Oxidation-Reduction reactions. A common apparatus generally consists of two different metals, each immersed in separate beakers containing their respective metal ions in solution that are connected by a salt bridge or separated by a porous membrane. Volta was the inventor of the voltaic pile, the first electrical battery.
Fluorination of solvents, useful for non-aqueous lithium-based batteries, improves the electrochemical stability but decreases the ionic conductivity. Here, the authors report a targeted functionalization of an ether solvent to balance the electrolyte ioni ...
The present invention concerns an electrolysis system for high temperature electrolysis including a plurality of flow-based electrolysis units configured to receive an electrolyte solution and to perform electrolysis to provide a first output gas and a sec ...
The solid electrolyte interphase (SEI) is a key component of a lithium-ion battery forming during the first few dischage/charge cycles at the interface between the anode and the electrolyte. The SEI passivates the anode-electrolyte interface by inhibiting ...