Bio-inspired computing, short for biologically inspired computing, is a field of study which seeks to solve computer science problems using models of biology. It relates to connectionism, social behavior, and emergence. Within computer science, bio-inspired computing relates to artificial intelligence and machine learning. Bio-inspired computing is a major subset of natural computation. Early Ideas The ideas behind biological computing trace back to 1936 and the first description of an abstract computer, which is now known as a Turing machine. Turing firstly described the abstract construct using a biological specimen. Turing imagined a mathematician that has three important attributes. He always has a pencil with an eraser, an unlimited number of papers and a working set of eyes. The eyes allow the mathematician to see and perceive any symbols written on the paper while the pencil allows him to write and erase any symbols that he wants. Lastly, the unlimited paper allows him to store anything he wants memory. Using these ideas he was able to describe an abstraction of the modern digital computer. However Turing mentioned that anything that can perform these functions can be considered such a machine and he even said that even electricity should not be required to describe digital computation and machine thinking in general. Neural Networks First described in 1943 by Warren McCulloch and Walter Pitts, neural networks are a prevalent example of biological systems inspiring the creation of computer algorithms. They first mathematically described that a system of simplistic neurons was able to produce simple logical operations such as logical conjunction, disjunction and negation. They further showed that a system of neural networks can be used to carry out any calculation that requires finite memory. Around 1970 the research around neural networks slowed down and many consider a 1969 book by Marvin Minsky and Seymour Papert as the main cause.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (5)
MICRO-515: Evolutionary robotics
The course gives an introduction to evolutionary computation, its major algorithms, applications to optimization problems (including evolution of neural networks), and application to design and contro
HUM-122(b): Global issues: communication B
Ce cours présente les enjeux mondiaux de la communication en lien avec l'essor de l'intelligence artificielle (IA). L'approche interdisciplinaire intègre les SHS avec les sciences de l'ingénierie et i
CS-330: Artificial intelligence
Introduction aux techniques de l'Intelligence Artificielle, complémentée par des exercices de programmation qui montrent les algorithmes et des exemples de leur application à des problèmes pratiques.
Show more
Related lectures (16)
General Introduction to Artificial Neural Networks
Covers the history and inspiration behind artificial neural networks, the structure of neurons, learning through synaptic connections, and the mathematical description of artificial neurons.
Bio-Inspired Learning: Neural Networks, Genetic Algorithms
Explores bio-inspired learning with neural networks and genetic algorithms, covering structure, training, and practical applications.
Neuromorphic Computing: Challenges & Future
Compares digital and neuromorphic computing, highlighting challenges and future prospects in the field.
Show more
Related publications (37)

From event-based surprise to lifelong learning.A journey in the timescales of adaptation

Martin Louis Lucien Rémy Barry

Humans and animals constantly adapt to their environment over the course of their life. This thesis seeks to integrate various timescales of adaptation, ranging from the adaptation of synaptic connections between spiking neurons (milliseconds), rapid behav ...
EPFL2023

A theory of memory consolidation and synaptic pruning in cortical circuits

Georgios Iatropoulos

Over the course of a lifetime, the human brain acquires an astonishing amount of semantic knowledge and autobiographical memories, often with an imprinting strong enough to allow detailed information to be recalled many years after the initial learning exp ...
EPFL2023

Puppeteer and Marionette: Learning Anticipatory Quadrupedal Locomotion Based on Interactions of a Central Pattern Generator and Supraspinal Drive

Auke Ijspeert, Guillaume Denis Antoine Bellegarda, Milad Shafiee Ashtiani

Quadruped animal locomotion emerges from the interactions between the spinal central pattern generator (CPG), sensory feedback, and supraspinal drive signals from the brain. Computational models of CPGs have been widely used for investigating the spinal co ...
New York2023
Show more
Related concepts (3)
Spiking neural network
Artificial neural network Spiking neural networks (SNNs) are artificial neural networks that more closely mimic natural neural networks. In addition to neuronal and synaptic state, SNNs incorporate the concept of time into their operating model. The idea is that neurons in the SNN do not transmit information at each propagation cycle (as it happens with typical multi-layer perceptron networks), but rather transmit information only when a membrane potential—an intrinsic quality of the neuron related to its membrane electrical charge—reaches a specific value, called the threshold.
Learning classifier system
Learning classifier systems, or LCS, are a paradigm of rule-based machine learning methods that combine a discovery component (e.g. typically a genetic algorithm) with a learning component (performing either supervised learning, reinforcement learning, or unsupervised learning). Learning classifier systems seek to identify a set of context-dependent rules that collectively store and apply knowledge in a piecewise manner in order to make predictions (e.g. behavior modeling, classification, data mining, regression, function approximation, or game strategy).
Artificial life
Artificial life (often abbreviated ALife or A-Life) is a field of study wherein researchers examine systems related to natural life, its processes, and its evolution, through the use of simulations with computer models, robotics, and biochemistry. The discipline was named by Christopher Langton, an American theoretical biologist, in 1986. In 1987 Langton organized the first conference on the field, in Los Alamos, New Mexico. There are three main kinds of alife, named for their approaches: soft, from software; hard, from hardware; and wet, from biochemistry.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.