In telecommunications, point-to-multipoint communication (P2MP, PTMP or PMP) is communication which is accomplished via a distinct type of one-to-many connection, providing multiple paths from a single location to multiple locations.
Point-to-multipoint telecommunications is typically used in wireless Internet and IP telephony via gigahertz radio frequencies. P2MP systems have been designed with and without a return channel from the multiple receivers. A central antenna or antenna array broadcasts to several receiving antennas and the system uses a form of time-division multiplexing to allow for the return channel traffic.
In contemporary usage, the term point-to-multipoint wireless communications relates to fixed wireless data communications for Internet or voice over IP via radio or microwave frequencies in the gigahertz range.
Point-to-multipoint is the most popular approach for wireless communications that have a large number of nodes, end destinations or end users. Point to Multipoint generally assumes there is a central base station to which remote subscriber units or customer premises equipment (CPE) (a term that was originally used in the wired telephone industry) are connected over the wireless medium. Connections between the base station and subscriber units can be either line-of-sight or, for lower-frequency radio systems, non-line-of-sight where link budgets permit. Generally, lower frequencies can offer non-line-of-sight connections. Various software planning tools can be used to determine feasibility of potential connections using topographic data as well as link budget simulation. Often the point to multipoint links are installed to reduce the cost of infrastructure and increase the number of CPE's and connectivity.
Point-to-multipoint wireless networks employing directional antennas are affected by the hidden node problem (also called hidden terminal) in case they employ a CSMA/CA medium access control protocol.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course provides in depth knowledge on how to design an energy autonomous microsystem embedding sensors with wireless transmission of information. It covers the energy generation, power management,
Telecommunication, often used in its plural form, is the transmission of information by various types of technologies over wire, radio, optical, or other electromagnetic systems. It has its origin in the desire of humans for communication over a distance greater than that feasible with the human voice, but with a similar scale of expediency; thus, slow systems (such as postal mail) are excluded from the field.
Microwave transmission is the transmission of information by electromagnetic waves with wavelengths in the microwave frequency range of 300MHz to 300GHz(1 m - 1 mm wavelength) of the electromagnetic spectrum. Microwave signals are normally limited to the line of sight, so long-distance transmission using these signals requires a series of repeaters forming a microwave relay network. It is possible to use microwave signals in over-the-horizon communications using tropospheric scatter, but such systems are expensive and generally used only in specialist roles.
Local multipoint distribution service (LMDS) is a broadband wireless access technology originally designed for digital television transmission (DTV). It was conceived as a fixed wireless, point-to-multipoint technology for utilization in the last mile. LMDS commonly operates on microwave frequencies across the 26 GHz and 29 GHz bands. In the United States, frequencies from 31.0 through 31.3 GHz are also considered LMDS frequencies.
Implanted medical devices (IMDs) have been widely developed to support the monitoring and recording of biological data inside the body or brain. Wirelessly powered IMDs, a subset of implantable electronics, have been proposed to eliminate the limitations r ...
Quasicrystals are aperiodically ordered structures with unconventional rotational symmetry. Their peculiar features have been explored in photonics to engineer bandgaps for light waves. Magnons (spin waves) are collective spin excitations in magnetically o ...
2021
,
The Telemetry, Tracking and Command (TT&C) antennas are a crucial component of small satellites, as their in-orbit attitude is not always well-defined. The TT&C antenna design for a CubeSat is an even more challenging task, considering the volume restricti ...
The European Association on Antennas and Propagation (EurAAP)2018