Neurophysiology is a branch of physiology and neuroscience that studies nervous system function rather than nervous system architecture. This area aids in the diagnosis and monitoring of neurological diseases. Historically, it has been dominated by electrophysiology—the electrical recording of neural activity ranging from the molar (the electroencephalogram, EEG) to the cellular (intracellular recording of the properties of single neurons), such as patch clamp, voltage clamp, extracellular single-unit recording and recording of local field potentials. However, since the neuron is an electrochemical machine, it is difficult to isolate electrical events from the metabolic and molecular processes that cause them. Thus, neurophysiologists currently utilise tools from chemistry (calcium imaging), physics (functional magnetic resonance imaging, fMRI), and molecular biology (site directed mutations) to examine brain activity. The word originates from the Greek word νεῦρον meaning "nerve" and physiology meaning knowledge about the function of living systems (φύσις meaning "nature" and -λογία meaning "knowledge"). Neurophysiology has been a subject of study since as early as 4,000 B.C. In the early B.C. years, most studies were of different natural sedatives like alcohol and poppy plants. In 1700 B.C., the Edwin Smith surgical papyrus was written. This papyrus was crucial in understanding how the ancient Egyptians understood the nervous system. This papyrus looked at different case studies about injuries to different parts of the body, most notably the head. Beginning around 460 B.C., Hippocrates began to study epilepsy, and theorized that it had its origins in the brain. Hippocrates also theorized that the brain was involved in sensation, and that it was where intelligence was derived from. Hippocrates, as well as most ancient Greeks, believed that relaxation and a stress free environment was crucial in helping treat neurological disorders. In 280 B.C.
Valerio Zerbi, Christina Maria Grimm