Summary
The New Safe Confinement (NSC or New Shelter, rarely Arka) is a structure put in place in 2016 to confine the remains of the number 4 reactor unit at the Chernobyl Nuclear Power Plant, in Ukraine, which was destroyed during the Chernobyl disaster in 1986. The structure also encloses the temporary Shelter Structure (sarcophagus) that was built around the reactor immediately after the disaster. The New Safe Confinement is designed to prevent the release of radioactive contaminants, protect the reactor from external influence, facilitate the disassembly and decommissioning of the reactor, and prevent water intrusion. The New Safe Confinement is a megaproject that is part of the Shelter Implementation Plan and supported by the Chernobyl Shelter Fund. It was designed with the primary goal of confining the radioactive remains of reactor 4 for the next 100 years. It also aims to allow for a partial demolition of the original sarcophagus, which was hastily constructed by Chernobyl liquidators after a beyond design-basis accident destroyed the reactor. The word is used rather than the traditional to emphasize the difference between the containment of radioactive gases—the primary focus of most reactor containment buildings—and the confinement of solid radioactive waste, which is the primary purpose of the New Safe Confinement. In 2015, the European Bank for Reconstruction and Development (EBRD) stated that the international community was aiming to close a €100 million funding gap, with administration by the EBRD in its role as manager of the Chernobyl decommissioning funds. The total cost of the Shelter Implementation Plan, of which the New Safe Confinement is the most prominent element, is estimated to be around €2.15 billion (US$2.3 billion). The New Safe Confinement accounts for €1.5 billion. The French consortium Novarka with partners Vinci Construction Grands Projets and Bouygues Travaux Publics designed and built the New Safe Confinement. Construction was completed at the end of 2018.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (2)
ME-464: Introduction to nuclear engineering
This course is intended to understand the engineering design of nuclear power plants using the basic principles of reactor physics, fluid flow and heat transfer. This course includes the following: Re
ENG-430: Risk management
This course offers students the opportunity to acquire the methods and tools needed for modern risk management from an engineering perspective. It focuses on actors, resources and objectives, while en
Related publications (8)