Summary
A black hole firewall is a hypothetical phenomenon where an observer falling into a black hole encounters high-energy quanta at (or near) the event horizon. The "firewall" phenomenon was proposed in 2012 by physicists Ahmed Almheiri, Donald Marolf, Joseph Polchinski, and James Sully as a possible solution to an apparent inconsistency in black hole complementarity. The proposal is sometimes referred to as the AMPS firewall, an acronym for the names of the authors of the 2012 paper. The potential inconsistency pointed out by AMPS had been pointed out earlier by Samir Mathur who used the argument in favour of the fuzzball proposal. The use of a firewall to resolve this inconsistency remains controversial, with physicists divided as to the solution to the paradox. According to quantum field theory in curved spacetime, a single emission of Hawking radiation involves two mutually entangled particles. The outgoing particle escapes and is emitted as a quanta of Hawking radiation; the infalling particle is swallowed by the black hole. Assume that a black hole formed a finite time in the past and will fully evaporate away in some finite time in the future. Then, it will only emit a finite amount of information encoded within its Hawking radiation. For an old black hole that has crossed the half-way point of evaporation, general arguments from quantum-information theory by Page and Lubkin suggest that the new Hawking radiation must be entangled with the old Hawking radiation. However, since the new Hawking radiation must also be entangled with degrees of freedom behind the horizon, this creates a paradox: a principle called "monogamy of entanglement" requires that, like any quantum system, the outgoing particle cannot be fully entangled with two independent systems at the same time; yet here the outgoing particle appears to be entangled with both the infalling particle and, independently, with past Hawking radiation. AMPS initially argued that to resolve the paradox physicists may eventually be forced to give up one of three time-tested principles: Einstein's equivalence principle, unitarity, or existing quantum field theory.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.