Covariant formulation of relativistic mechanics

Miguel Alexandre Ribeiro Correia

Accretion disks surrounding compact objects, and other environmental factors, deviate satellites from geodetic motion. Unfortunately, setting up the equations of motion for such relativistic trajectories is not as simple as in Newtonian mechanics. The principle of general (or Lorentz) covariance and the mass-shell constraint make it difficult to parametrize physically adequate 4-forces. Here, we propose a solution to this old problem. We apply our framework to several conservative and dissipative forces. In particular, we propose covariant formulations for Hooke???s law and the constant force and compute the drag due to gravitational and hard-sphere collisions in dust, gas, and radiation media. We recover and covariantly extend known forces such as Epstein drag, Chandrasekhar???s dynamical friction, and Poynting-Robertson drag. Variable-mass effects are also considered, namely, Hoyle-Lyttleton accretion and the variable-mass rocket. We conclude with two applications: (1) The free-falling spring, where we find that Hooke???s law corrects the deviation equation by an effective anti???de Sitter tidal force and (2) black hole infall with drag. We numerically compute some trajectories on a Schwarzschild background supporting a dustlike accretion disk.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés


Publications associées