In chemistry and manufacturing, electrolysis is a technique that uses direct electric current (DC) to drive an otherwise non-spontaneous chemical reaction. Electrolysis is commercially important as a stage in the separation of elements from naturally occurring sources such as ores using an electrolytic cell. The voltage that is needed for electrolysis to occur is called the decomposition potential. The word "lysis" means to separate or break, so in terms, electrolysis would mean "breakdown via electricity".
The word "electrolysis" was introduced by Michael Faraday in 1834, using the Greek words ἤλεκτρον ɛ̌ːlektron "amber", which since the 17th century was associated with electrical phenomena, and λύσις lýsis meaning "dissolution". Nevertheless, electrolysis, as a tool to study chemical reactions and obtain pure elements, precedes the coinage of the term and formal description by Faraday.
In the early nineteenth century, William Nicholson and Anthony Carlisle sought to further Volta's experiments. They attached two wires to either side of a voltaic pile and placed the other ends in a tube filled with water. They noticed when the wires were brought together that each wire produced bubbles. One type was hydrogen, the other was oxygen.
In 1785 a Dutch scientist named Martin van Marum created an electrostatic generator that he used to reduce tin, zinc and antimony from their salts using a process later known as electrolysis. Though he unknowingly produced electrolysis, it was not until 1800 when William Nicholson and Anthony Carlisle discovered how electrolysis works.
In 1791 Luigi Galvani experimented with frog legs. He claimed that placing animal muscle between two dissimilar metal sheets resulted in electricity. Responding to these claims, Alessandro Volta conducted his own tests. This would give insight to Humphry Davy's ideas on electrolysis. During preliminary experiments, Humphry Davy hypothesized that when two elements combine to form a compound, electrical energy is released.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Cet enseignement vise l'acquisition des notions essentielles relatives à la structure de la matière, aux équilibres et à la réactivité chimiques. Le cours et les exercices fournissent la méthodologie
Les étudiants intègrent les notions de potentiels électriques, de niveau de Fermi de l'électron et appliquent l'équation de Nernst. Ils comprennent la structure d'une interface électrifiée. Les généra
This course builds upon the underlying theory in thermodynamics, reaction kinetics, and transport and applies these methods to electrosynthesis, fuel cell, and battery applications. Special focus is p
Redox (ˈrɛdɒks , ˈriːdɒks , reduction–oxidation or oxidation–reduction) is a type of chemical reaction in which the oxidation states of substrate change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or a decrease in the oxidation state. There are two classes of redox reactions: Electron-transfer – Only one (usually) electron flows from the atom being oxidized to the atom that is reduced. This type of redox reaction is often discussed in terms of redox couples and electrode potentials.
Electrochemistry is the branch of physical chemistry concerned with the relationship between electrical potential difference, as a measurable and quantitative phenomenon, and identifiable chemical change, with the potential difference as an outcome of a particular chemical change, or vice versa. These reactions involve electrons moving via an electronically-conducting phase (typically an external electrical circuit, but not necessarily, as in electroless plating) between electrodes separated by an ionically conducting and electronically insulating electrolyte (or ionic species in a solution).
An electrochemical cell is a device that generates electrical energy from chemical reactions. Electrical energy can also be applied to these cells to cause chemical reactions to occur. Electrochemical cells which generate an electric current are called voltaic or galvanic cells and those that generate chemical reactions, via electrolysis for example, are called electrolytic cells. Both galvanic and electrolytic cells can be thought of as having two half-cells: consisting of separate oxidation and reduction reactions.
Discusses hydrogen's role in the future energy mix, key drivers of energy transition, challenges in modeling domestic energy demand, and integration of energy models.
Renewable energy sources offer a promising solution for mitigating sustainability and CO2 emissions-related issues due to their vast energy generation capacity. They enable hydrogen production via water electrolysis, as well as carbon capture and utilizati ...
EPFL2024
The transition towards clean renewable energy sources, where wind and solar are prone to variation, requires adequate energy storage. Power-to-methane (PtM) systems can be part of the solution. Specifically, solid-oxide-electrolyser (SOE) based PtM systems ...
For the sustainable development of the renewable hydrogen sector, alkaline electrolysis appears to be a technology of choice. Nevertheless, despite its long history that showed its reliability in the industrial field and despite the traditional belief from ...