Summary
Information extraction (IE) is the task of automatically extracting structured information from unstructured and/or semi-structured machine-readable documents and other electronically represented sources. In most of the cases this activity concerns processing human language texts by means of natural language processing (NLP). Recent activities in multimedia document processing like automatic annotation and content extraction out of images/audio/video/documents could be seen as information extraction Due to the difficulty of the problem, current approaches to IE (as of 2010) focus on narrowly restricted domains. An example is the extraction from newswire reports of corporate mergers, such as denoted by the formal relation: from an online news sentence such as: "Yesterday, New York based Foo Inc. announced their acquisition of Bar Corp." A broad goal of IE is to allow computation to be done on the previously unstructured data. A more specific goal is to allow automated reasoning about the logical form of the input data. Structured data is semantically well-defined data from a chosen target domain, interpreted with respect to category and context. Information extraction is the part of a greater puzzle which deals with the problem of devising automatic methods for text management, beyond its transmission, storage and display. The discipline of information retrieval (IR) has developed automatic methods, typically of a statistical flavor, for indexing large document collections and classifying documents. Another complementary approach is that of natural language processing (NLP) which has solved the problem of modelling human language processing with considerable success when taking into account the magnitude of the task. In terms of both difficulty and emphasis, IE deals with tasks in between both IR and NLP. In terms of input, IE assumes the existence of a set of documents in which each document follows a template, i.e. describes one or more entities or events in a manner that is similar to those in other documents but differing in the details.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.