Concept

Carbohydrate metabolism

Summary
Carbohydrate metabolism is the whole of the biochemical processes responsible for the metabolic formation, breakdown, and interconversion of carbohydrates in living organisms. Carbohydrates are central to many essential metabolic pathways. Plants synthesize carbohydrates from carbon dioxide and water through photosynthesis, allowing them to store energy absorbed from sunlight internally. When animals and fungi consume plants, they use cellular respiration to break down these stored carbohydrates to make energy available to cells. Both animals and plants temporarily store the released energy in the form of high-energy molecules, such as adenosine triphosphate (ATP), for use in various cellular processes. Humans can consume a variety of carbohydrates, digestion breaks down complex carbohydrates into simple monomers (monosaccharides): glucose, fructose, mannose and galactose. After resorption in the gut, the monosaccharides are transported, through the portal vein, to the liver, where all non-glucose monosacharids (fructose, galactose) are transformed into glucose as well. Glucose (blood sugar) is distributed to cells in the tissues, where it is broken down via cellular respiration, or stored as glycogen. In cellular (aerobic) respiration, glucose and oxygen are metabolized to release energy, with carbon dioxide and water as endproducts. Glycolysis is the process of breaking down a glucose molecule into two pyruvate molecules, while storing energy released during this process as adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide (NADH). Nearly all organisms that break down glucose utilize glycolysis. Glucose regulation and product use are the primary categories in which these pathways differ between organisms. In some tissues and organisms, glycolysis is the sole method of energy production. This pathway is common to both anaerobic and aerobic respiration. Glycolysis consists of ten steps, split into two phases. During the first phase, it requires the breakdown of two ATP molecules.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.