In organic chemistry, the anomeric effect or Edward-Lemieux effect is a stereoelectronic effect that describes the tendency of heteroatomic substituents adjacent to a heteroatom within a cyclohexane ring to prefer the axial orientation instead of the less hindered equatorial orientation that would be expected from steric considerations. This effect was originally observed in pyranose rings by J. T. Edward in 1955 when studying carbohydrate chemistry.
The term anomeric effect was introduced in 1958. The name comes from the term used to designate the lowest-numbered ring carbon of a pyranose, the anomeric carbon. Isomers that differ only in the configuration at the anomeric carbon are called anomers. The anomers of D-glucopyranose are diastereomers, with the beta anomer having an OH group pointing up equatorially, and the alpha anomer having that OH group pointing down axially.
The anomeric effect can also be generalized to any cyclohexyl or linear system with the general formula C-Y-C-X, where Y is a heteroatom with one or more lone pairs, and X is an electronegative atom or group. The magnitude of the anomeric effect is estimated at about 1–2 kcal/mol in the case of sugars, but is different for every molecule.
In the above case, the methoxy group on the cyclohexane ring (top) prefers the equatorial position. However, in the tetrahydropyran ring (bottom), the methoxy group prefers the axial position. This is because in the cyclohexane ring, Y= carbon, which is not a heteroatom, so the anomeric effect is not observed and sterics dominates the observed substituent position. In the tetrahydropyran ring, Y= oxygen, which is a heteroatom, so the anomeric effect contributes and stabilizes the observed substituent position. In both cases, X= OMe.
The anomeric effect is most often observed when Y= oxygen, but can also be seen with other lone pair bearing heteroatoms in the ring, such as nitrogen, sulfur, and phosphorus.
The exact method by which the anomeric effect causes stabilization is a point of controversy, and several hypotheses have been proposed to explain it.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course covers the production of ceramics and colloids from the basic scientific concepts and theories needed to understand the forming processes to the mechanisms and methods of sintering (firing)
The first part of the course is devoted to the self-assembly of molecules. In the second part we discuss basic physical chemical principles of polymers in solutions, at interfaces, and in bulk. Finall
Pyranose is a collective term for saccharides that have a chemical structure that includes a six-membered ring consisting of five carbon atoms and one oxygen atom. There may be other carbons external to the ring. The name derives from its similarity to the oxygen heterocycle pyran, but the pyranose ring does not have double bonds. A pyranose in which the anomeric OH at C(l) has been converted into an OR group is called a pyranoside. The pyranose ring is formed by the reaction of the hydroxyl group on carbon 5 (C-5) of a sugar with the aldehyde at carbon 1.
Carbohydrate conformation refers to the overall three-dimensional structure adopted by a carbohydrate (saccharide) molecule as a result of the through-bond and through-space physical forces it experiences arising from its molecular structure. The physical forces that dictate the three-dimensional shapes of all molecules—here, of all monosaccharide, oligosaccharide, and polysaccharide molecules—are sometimes summarily captured by such terms as "steric interactions" and "stereoelectronic effects" (see below).
Steric effects arise from the spatial arrangement of atoms. When atoms come close together there is generally a rise in the energy of the molecule. Steric effects are nonbonding interactions that influence the shape (conformation) and reactivity of ions and molecules. Steric effects complement electronic effects, which dictate the shape and reactivity of molecules. Steric repulsive forces between overlapping electron clouds result in structured groupings of molecules stabilized by the way that opposites attract and like charges repel.
In this thesis, an experimental study of low-temperature stereodynamics in the reactive scattering of Ne(3P2) + X collisions (X = Ar, Kr, Xe, CO and N2) is presented. The steric effect of Ne(3P2) in these reactions is observed experimentally using a contro ...
DNA mechanics plays a crucial role in many biological processes, including nucleosome positioning and protein-DNA interactions. It is believed that nature employs epigenetic modifications in DNA to further regulate gene expression. Moreover, double-strande ...
EPFL2023
We investigate the gas-phase structure of the neutral pentaalanine peptide. The IR spectrum in the 340-1820 cm-1 frequency range is obtained by employing supersonic jet cooling, infrared multiphoton dissociation, and vacuum-ultraviolet action spectroscopy. ...