Summary
A torsion bar suspension, also known as a torsion spring suspension, is any vehicle suspension that uses a torsion bar as its main weight-bearing spring. One end of a long metal bar is attached firmly to the vehicle chassis; the opposite end terminates in a lever, the torsion key, mounted perpendicular to the bar, that is attached to a suspension arm, a spindle, or the axle. Vertical motion of the wheel causes the bar to twist around its axis and is resisted by the bar's torsion resistance. The effective spring rate of the bar is determined by its length, cross section, shape, material, and manufacturing process. Torsion bar suspensions are used on combat vehicles and tanks like the T-72, Leopard 1, Leopard 2, M26 Pershing, M18 Hellcat, M48 Patton, M60 Patton and the M1 Abrams (many tanks from World War II used this suspension), and on modern trucks and SUVs from Ford, Chrysler, GM, Mitsubishi, Mazda, Nissan, Isuzu, LuAZ, and Toyota. Class 8 truck manufacturer Kenworth also offered a torsion bar suspension for its K100C and W900A models, up to about 1981. Manufacturers change the torsion bar or key to adjust the ride height, usually to compensate for engine weight. The main advantages of a torsion bar suspension are soft ride due to elasticity of the bar, durability, easy adjustability of ride height, and small profile along the width of the vehicle. It takes up less of the vehicle's interior volume than coil springs. Torsion bars reached the height of their popularity on mass-production road cars in the middle of the 20th century at the same time that unitary construction was being adopted. At a time when the mechanics of stress and metal fatigue in unitary body frames was poorly understood, torsion bars were very attractive to vehicle designers as the bars could be mounted to reinforced parts of the central structure, typically the bulkhead. Using MacPherson struts to achieve independent front suspension with coil springs meant providing strong turrets in the frontal structure of the car.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (26)
Related concepts (14)
Car suspension
Suspension is the system of tires, tire air, springs, shock absorbers and linkages that connects a vehicle to its wheels and allows relative motion between the two. Suspension systems must support both road holding/handling and ride quality, which are at odds with each other. The tuning of suspensions involves finding the right compromise. It is important for the suspension to keep the road wheel in contact with the road surface as much as possible, because all the road or ground forces acting on the vehicle do so through the contact patches of the tires.
Front-wheel drive
Front-wheel drive (FWD) is a form of engine and transmission layout used in motor vehicles, where the engine drives the front wheels only. Most modern front-wheel drive vehicles feature a transverse engine, rather than the conventional longitudinal engine arrangement generally found in rear-wheel drive and four-wheel drive vehicles. Car layout#Front-wheel-drive layouts By far the most common layout for a front-wheel drive car is with the engine and transmission at the front of the car, mounted transversely.
Volkswagen Beetle
The Volkswagen Beetle—officially the Volkswagen Type 1, is an economy car that was manufactured and marketed by the German company Volkswagen (VW) from 1938 until 2003. It has a rear-engine design with a two-door bodystyle and is intended for five occupants (later, Beetles were restricted to four people in some countries). The need for a people's car (Volkswagen in German), its concept and its functional objectives were formulated by the leader of Nazi Germany, Adolf Hitler, who wanted a cheap, simple car to be mass-produced for his country's new road network (Reichsautobahn).
Show more