Concept

Accelerating expansion of the universe

Summary
Observations show that the expansion of the universe is accelerating, such that the velocity at which a distant galaxy recedes from the observer is continuously increasing with time. The accelerated expansion of the universe was discovered during 1998 by two independent projects, the Supernova Cosmology Project and the High-Z Supernova Search Team, which both used distant type Ia supernovae to measure the acceleration. The idea was that as type Ia supernovae have almost the same intrinsic brightness (a standard candle), and since objects that are farther away appear dimmer, we can use the observed brightness of these supernovae to measure the distance to them. The distance can then be compared to the supernovae's cosmological redshift, which measures how much the universe has expanded since the supernova occurred; the Hubble law established that the farther an object is from us, the faster it is receding. The unexpected result was that objects in the universe are moving away from one another at an accelerated rate. Cosmologists at the time expected that recession velocity would always be decelerating, due to the gravitational attraction of the matter in the universe. Three members of these two groups have subsequently been awarded Nobel Prizes for their discovery. Confirmatory evidence has been found in baryon acoustic oscillations, and in analyses of the clustering of galaxies. The accelerated expansion of the universe is thought to have begun since the universe entered its dark-energy-dominated era roughly 5 billion years ago. Within the framework of general relativity, an accelerated expansion can be accounted for by a positive value of the cosmological constant Λ, equivalent to the presence of a positive vacuum energy, dubbed "dark energy". While there are alternative possible explanations, the description assuming dark energy (positive Λ) is used in the current standard model of cosmology, which also includes cold dark matter (CDM) and is known as the Lambda-CDM model.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (1)

Scale invariance, unimodular gravity and dark energy

Daniel Zenhäusern

We demonstrate that the combination of the ideas of unimodular gravity, scale invariance, and the existence of an exactly massless dilaton leads to the evolution of the universe supported by present o
2009
Related concepts (71)
Dark energy
In physical cosmology and astronomy, dark energy is an unknown form of energy that affects the universe on the largest scales. The first observational evidence for its existence came from measurements of supernovas, which showed that the universe does not expand at a constant rate; rather, the universe's expansion is accelerating. Understanding the universe's evolution requires knowledge of its starting conditions and composition. Before these observations, scientists thought that all forms of matter and energy in the universe would only cause the expansion to slow down over time.
Accelerating expansion of the universe
Observations show that the expansion of the universe is accelerating, such that the velocity at which a distant galaxy recedes from the observer is continuously increasing with time. The accelerated expansion of the universe was discovered during 1998 by two independent projects, the Supernova Cosmology Project and the High-Z Supernova Search Team, which both used distant type Ia supernovae to measure the acceleration.
Hubble's law
Hubble's law, also known as the Hubble–Lemaître law, is the observation in physical cosmology that galaxies are moving away from Earth at speeds proportional to their distance. In other words, the farther they are, the faster they are moving away from Earth. The velocity of the galaxies has been determined by their redshift, a shift of the light they emit toward the red end of the visible spectrum. Hubble's law is considered the first observational basis for the expansion of the universe, and today it serves as one of the pieces of evidence most often cited in support of the Big Bang model.
Show more
Related courses (8)
PHYS-428: Relativity and cosmology II
This course is the basic introduction to modern cosmology. It introduces students to the main concepts and formalism of cosmology, the observational status of Hot Big Bang theory and discusses major
PHYS-402: Astrophysics IV : observational cosmology
Cosmology is the study of the structure and evolution of the universe as a whole. This course describes the principal themes of cosmology, as seen from the point of view of observations.
PHYS-427: Relativity and cosmology I
Introduce the students to general relativity and its classical tests.
Show more
Related MOOCs (1)
The Radio Sky I: Science and Observations
Be captivated by the exotic objects that populate the Radio Sky and gain a solid understanding of their physics and the fundamental techniques we use to observe them.