Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
The expansion of the universe is the increase in distance between gravitationally unbound parts of the observable universe with time. It is an intrinsic expansion; the universe does not expand "into" anything and does not require space to exist "outside" it. To any observer in the universe, it appears that all but the nearest galaxies (which are bound by gravity) recede at speeds that are proportional to their distance from the observer, on average. While objects cannot move faster than light, this limitation only applies with respect to local reference frames and does not limit the recession rates of cosmologically distant objects. Cosmic expansion is a key feature of Big Bang cosmology. It can be modeled mathematically with the Friedmann–Lemaître–Robertson–Walker metric, where it corresponds to an increase in the scale of the spatial part of the universe's spacetime metric (which governs the size and geometry of spacetime). Within this framework, stationary objects separate over time because space is expanding. However, this is not a generally covariant description but rather only a choice of coordinates. Contrary to common misconception, it is equally valid to adopt a description in which space does not expand and objects simply move apart under the influence of their mutual gravity. Although cosmic expansion is often framed as a consequence of general relativity, it is also predicted by Newtonian gravity. According to inflation theory, during the inflationary epoch about 10−32 of a second after the Big Bang, the universe suddenly expanded, and its volume increased by a factor of at least 1078 (an expansion of distance by a factor of at least 1026 in each of the three dimensions). This would be equivalent to expanding an object 1 nanometer (10−9 m, about half the width of a molecule of DNA) in length to one approximately 10.6 light years (about 1017 m or 62 trillion miles) long. Cosmic expansion subsequently decelerated down to much slower rates, until at around 9.
Stewart Cole, Xin Chen, Jean-Paul Richard Kneib, Eduardo Sanchez, Zheng Zheng, Andrei Variu, Daniel Felipe Forero Sanchez, Antoine Philippe Jacques Rocher, Hua Zhang, Sun Hee Kim, Cheng Zhao, Anand Stéphane Raichoor, David Schlegel, Jiangyan Yang, Ting Tan, Zhifeng Ding, Julien Guy, Arjun Dey
Frédéric Courbin, Georges Meylan, Gianluca Castignani, Austin Chandler Peel, Maurizio Martinelli, Yi Wang, Richard Massey, Fabio Finelli, Marcello Farina