Rebreather diving is underwater diving using diving rebreathers, a class of underwater breathing apparatus which recirculate the breathing gas exhaled by the diver after replacing the oxygen used and removing the carbon dioxide metabolic product. Rebreather diving is practiced by recreational, military and scientific divers in applications where it has advantages over open circuit scuba, and surface supply of breathing gas is impracticable. The main advantages of rebreather diving are extended gas endurance, low noise levels, and lack of bubbles.
Rebreathers are generally used for scuba applications, but are also occasionally used for bailout systems for surface-supplied diving. Gas reclaim systems used for deep heliox diving use similar technology to rebreathers, as do saturation diving life support systems, but in these applications the gas recycling equipment is not carried by the diver. Atmospheric diving suits also carry rebreather technology to recycle breathing gas as part of the life-support system, but this article covers the procedures of ambient pressure diving using rebreathers carried by the diver.
Rebreathers are generally more complex to use than open circuit scuba, and have more potential points of failure, so acceptably safe use requires a greater level of skill, attention and situational awareness, which is usually derived from understanding the systems, diligent maintenance and overlearning the practical skills of operation and fault recovery. Fault tolerant design can make a rebreather less likely to fail in a way that immediately endangers the user, and reduces the task loading on the diver which in turn may lower the risk of operator error.
At shallow depths, a diver using open-circuit breathing apparatus typically only uses about a quarter of the oxygen in the air that is breathed in, which is about 4 to 5% of the inspired volume. The remaining oxygen is exhaled along with nitrogen and carbon dioxide – about 95% of the volume.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Hyperoxia occurs when cells, tissues and organs are exposed to an excess supply of oxygen (O2) or higher than normal partial pressure of oxygen. In medicine, it refers to excessive oxygen in the lungs or other body tissues, and results from raised alveolar oxygen partial pressure - that is, alveolar oxygen partial pressure greater than that due to breathing air at normal (sea level) atmospheric pressure. This can be caused by breathing air, at pressure above normal, or by breathing other gas mixtures with a high oxygen fraction, high ambient pressure or both.
A Diving rebreather is an underwater breathing apparatus that absorbs the carbon dioxide of a diver's exhaled breath to permit the rebreathing (recycling) of the substantially unused oxygen content, and unused inert content when present, of each breath. Oxygen is added to replenish the amount metabolised by the diver. This differs from open-circuit breathing apparatus, where the exhaled gas is discharged directly into the environment.
Scientific diving is the use of underwater diving techniques by scientists to perform work underwater in the direct pursuit of scientific knowledge. The legal definition of scientific diving varies by jurisdiction. Scientific divers are normally qualified scientists first and divers second, who use diving equipment and techniques as their way to get to the location of their fieldwork. The direct observation and manipulation of marine habitats afforded to scuba-equipped scientists have transformed the marine sciences generally, and marine biology and marine chemistry in particular.
Quantum computing has made significant progress in recent years, with Google and IBM releasing quantum computers with 72 and 50 qubits, respectively. Google has also achieved quantum supremacy with its 54-qubit device, and IBM has announced the release of ...
Photosensitizers of singlet oxygen exhibit three main types of reverse intersystem-crossing (RISC): thermally activated, triplet-triplet annihilation, and singlet oxygen feedback. RISC can be followed by delayed fluorescence (DF) emission, which can provid ...
Fluidic actuation enables movement in a wide range of mechanical systems, from simple laboratory devices to more complex industrial machinery. Fluids are used to generate motion of mechanical pieces. The term "fluids" encompasses two types of technologies: ...