In astrobiology and planetary astrophysics, the galactic habitable zone is the region of a galaxy in which life might most likely develop. The concept of a galactic habitable zone analyzes various factors, such as metallicity (the presence of elements heavier than hydrogen and helium) and the rate and density of major catastrophes such as supernovae, and uses these to calculate which regions of a galaxy are more likely to form terrestrial planets, initially develop simple life, and provide a suitable environment for this life to evolve and advance. According to research published in August 2015, very large galaxies may favor the birth and development of habitable planets more than smaller galaxies such as the Milky Way. In the case of the Milky Way, its galactic habitable zone is commonly believed to be an annulus with an outer radius of about and an inner radius close to the Galactic Center (with both radii lacking hard boundaries). Galactic habitable-zone theory has been criticized due to an inability to accurately quantify the factors making a region of a galaxy favorable for the emergence of life. In addition, computer simulations suggest that stars may change their orbits around the galactic center significantly, therefore challenging at least part of the view that some galactic areas are necessarily more life-supporting than others. The idea of the circumstellar habitable zone was introduced in 1953 by Hubertus Strughold and Harlow Shapley and in 1959 by Su-Shu Huang as the region around a star in which an orbiting planet could retain water at its surface. From the 1970s, planetary scientists and astrobiologists began to consider various other factors required for the creation and sustenance of life, including the impact that a nearby supernova may have on life's development. In 1981, computer scientist Jim Clarke proposed that the apparent lack of extraterrestrial civilizations in the Milky Way could be explained by Seyfert-type outbursts from an active galactic nucleus, with Earth alone being spared from this radiation by virtue of its location in the galaxy.
Pascale Jablonka, Nicolas Lawrence Etienne Longeard, Carmela Lardo, Marc Gentile
Nicolas Lawrence Etienne Longeard
Nicolas Lawrence Etienne Longeard