Nanoparticles are classified as having at least one of three dimensions be in the range of 1-100 nm. The small size of nanoparticles allows them to have unique characteristics which may not be possible on the macro-scale. Self-assembly is the spontaneous organization of smaller subunits to form larger, well-organized patterns. For nanoparticles, this spontaneous assembly is a consequence of interactions between the particles aimed at achieving a thermodynamic equilibrium and reducing the system’s free energy. The thermodynamics definition of self-assembly was introduced by Nicholas A. Kotov. He describes self-assembly as a process where components of the system acquire non-random spatial distribution with respect to each other and the boundaries of the system. This definition allows one to account for mass and energy fluxes taking place in the self-assembly processes. This process occurs at all size scales, in the form of either static or dynamic self-assembly. Static self-assembly utilizes interactions amongst the nano-particles to achieve a free-energy minimum. In solutions, it is an outcome of random motion of molecules and the affinity of their binding sites for one another. A dynamic system is forced to not reach equilibrium by supplying the system with a continuous, external source of energy to balance attractive and repulsive forces. Magnetic fields, electric fields, ultrasound fields, light fields, etc. have all been used as external energy sources to program robot swarms at small scales. Static self-assembly is significantly slower compared to dynamic self-assembly as it depends on the random chemical interactions between particles. Self assembly can be directed in two ways. The first is by manipulating the intrinsic properties which includes changing the directionality of interactions or changing particle shapes. The second is through external manipulation by applying and combining the effects of several kinds of fields to manipulate the building blocks into doing what is intended.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (28)
MICRO-724: Advanced topics in micro- and nanomanufacturing: top-down meets bottom-up
This course introduces advanced fabrication methods enabling the manufacturing of novel micro- and nanosystems (NEMS/MEMS). Both top-down techniques (lithography, stenciling, scanning probes, additive
MICRO-632: Advanced micro-/nano- manufacturing
This course contains lectures covering the latest research and development done in the field of micro-/nano- manufacturing methods and processes. It consists on an intensive 5 days training and is d
MSE-425: Soft matter
The first part of the course is devoted to the self-assembly of molecules. In the second part we discuss basic physical chemical principles of polymers in solutions, at interfaces, and in bulk. Finall
Show more