In mathematics, Siegel's theorem on integral points states that for a smooth algebraic curve C of genus g defined over a number field K, presented in affine space in a given coordinate system, there are only finitely many points on C with coordinates in the ring of integers O of K, provided g > 0.
The theorem was first proved in 1929 by Carl Ludwig Siegel and was the first major result on Diophantine equations that depended only on the genus and not any special algebraic form of the equations. For g > 1 it was superseded by Faltings's theorem in 1983.
In 1929, Siegel proved the theorem by combining a version of the Thue–Siegel–Roth theorem, from diophantine approximation, with the Mordell–Weil theorem from diophantine geometry (required in Weil's version, to apply to the Jacobian variety of C).
In 2002, Umberto Zannier and Pietro Corvaja gave a new proof by using a new method based on the subspace theorem.
Siegel's result was ineffective (see effective results in number theory), since Thue's method in diophantine approximation also is ineffective in describing possible very good rational approximations to algebraic numbers. Effective results in some cases derive from Baker's method.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A height function is a function that quantifies the complexity of mathematical objects. In Diophantine geometry, height functions quantify the size of solutions to Diophantine equations and are typically functions from a set of points on algebraic varieties (or a set of algebraic varieties) to the real numbers. For instance, the classical or naive height over the rational numbers is typically defined to be the maximum of the numerators and denominators of the coordinates (e.g.
Faltings's theorem is a result in arithmetic geometry, according to which a curve of genus greater than 1 over the field of rational numbers has only finitely many rational points. This was conjectured in 1922 by Louis Mordell, and known as the Mordell conjecture until its 1983 proof by Gerd Faltings. The conjecture was later generalized by replacing by any number field. Let be a non-singular algebraic curve of genus over . Then the set of rational points on may be determined as follows: When , there are either no points or infinitely many.