A height function is a function that quantifies the complexity of mathematical objects. In Diophantine geometry, height functions quantify the size of solutions to Diophantine equations and are typically functions from a set of points on algebraic varieties (or a set of algebraic varieties) to the real numbers.
For instance, the classical or naive height over the rational numbers is typically defined to be the maximum of the numerators and denominators of the coordinates (e.g. 7 for the coordinates (3/7, 1/2)), but in a logarithmic scale.
Height functions allow mathematicians to count objects, such as rational points, that are otherwise infinite in quantity. For instance, the set of rational numbers of naive height (the maximum of the numerator and denominator when expressed in lowest terms) below any given constant is finite despite the set of rational numbers being infinite. In this sense, height functions can be used to prove asymptotic results such as Baker's theorem in transcendental number theory which was proved by .
In other cases, height functions can distinguish some objects based on their complexity. For instance, the subspace theorem proved by demonstrates that points of small height (i.e. small complexity) in projective space lie in a finite number of hyperplanes and generalizes Siegel's theorem on integral points and solution of the S-unit equation.
Height functions were crucial to the proofs of the Mordell–Weil theorem and Faltings's theorem by and respectively. Several outstanding unsolved problems about the heights of rational points on algebraic varieties, such as the Manin conjecture and Vojta's conjecture, have far-reaching implications for problems in Diophantine approximation, Diophantine equations, arithmetic geometry, and mathematical logic.
An early form of height function was proposed by Giambattista Benedetti (c. 1563), who argued that the consonance of a musical interval could be measured by the product of its numerator and denominator (in reduced form); see .
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, Siegel's theorem on integral points states that for a smooth algebraic curve C of genus g defined over a number field K, presented in affine space in a given coordinate system, there are only finitely many points on C with coordinates in the ring of integers O of K, provided g > 0. The theorem was first proved in 1929 by Carl Ludwig Siegel and was the first major result on Diophantine equations that depended only on the genus and not any special algebraic form of the equations.
In mathematics, Roth's theorem or Thue–Siegel–Roth theorem is a fundamental result in diophantine approximation to algebraic numbers. It is of a qualitative type, stating that algebraic numbers cannot have many rational number approximations that are 'very good'. Over half a century, the meaning of very good here was refined by a number of mathematicians, starting with Joseph Liouville in 1844 and continuing with work of , , , and . Roth's theorem states that every irrational algebraic number has approximation exponent equal to 2.
Gerd Faltings (ɡɛʁt ˈfaltɪŋs; born 28 July 1954) is a German mathematician known for his work in arithmetic geometry. From 1972 to 1978, Faltings studied mathematics and physics at the University of Münster. In 1978 he received his PhD in mathematics. In 1981 he obtained the venia legendi (Habilitation) in mathematics, from the University of Münster. During this time he was an assistant professor at the University of Münster. From 1982 to 1984, he was professor at the University of Wuppertal.
This year's topic is "Adelic Number Theory" or how the language of adeles and ideles and harmonic analysis on the corresponding spaces can be used to revisit classical questions in algebraic number th
1ère année: bases nécessaires à la représentation informatique 2D (3D).
Passage d'un à plusieurs logiciels: compétence de choisir les outils adéquats en 2D et en 3D.
Mise en relation des outils de CAO
Explores integration on H_pxH and arithmetic properties, including norms, structures, and polynomial factorization.
We provide new explicit examples of lattice sphere packings in dimensions 54, 55, 162, 163, 486 and 487 that are the densest known so far, using Kummer families of elliptic curves over global function fields.In some cases, these families of elliptic curves ...
EPFL2024
, ,
We examine the moments of the number of lattice points in a fixed ball of volume V for lattices in Euclidean space which are modules over the ring of integers of a number field K. In particular, denoting by ωK the number of roots of unity in K, we ...
Witness encryption is a cryptographic primitive which encrypts a message under an instance of an NP language and decrypts the ciphertext using a witness associated with that instance. In the current state of the art, most of the witness encryption construc ...