Concept

Pulsed inductive thruster

A pulsed inductive thruster (PIT) is a form of ion thruster, used in spacecraft propulsion. It is a plasma propulsion engine using perpendicular electric and magnetic fields to accelerate a propellant with no electrode. A nozzle releases a puff of gas which spreads across a flat spiraling induction coil of wire about 1 meter across. A bank of capacitors releases a pulse of high voltage electric current of tens of kilovolts lasting 10 microseconds into the coil, generating a radial magnetic field. This induces a circular electrical field in the gas, ionizing it and causing charged particles (free electrons and ions) to revolve in the opposite direction as the original pulse of current. Because the motion of this induced current flow is perpendicular to the magnetic field, the plasma is accelerated out into space by the Lorentz force at a high exhaust velocity (10 to 100 km/s). Unlike an electrostatic ion thruster which uses an electric field to accelerate only one species (positive ions), a PIT uses the Lorentz body force acting upon all charged particles within a quasi-neutral plasma. Unlike most other ion and plasma thrusters, it also requires no electrodes (which are susceptible to erosion) and its power can be scaled up simply by increasing the number of pulses per second. A 1-megawatt system would pulse 200 times per second. Pulsed inductive thrusters can maintain constant specific impulse and thrust efficiency over a wide range of input power levels by adjusting the pulse rate to maintain a constant discharge energy per pulse. It has demonstrated efficiency greater than 50%. Pulsed inductive thrusters can use a wide range of gases as a propellant, such as water, hydrazine, ammonia, argon, or xenon, among many others. Due to this ability, it has been suggested to use PITs for Martian missions: an orbiter could refuel by scooping CO2 from the atmosphere of Mars, compressing the gas and liquefying it into storage tanks for the return journey or another interplanetary mission, whilst orbiting the planet.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (13)
Chemical Propulsion Systems: An Overview
Covers the principles and applications of chemical propulsion systems in space missions.
Industrial Plasmas: Sheath Formation and Plasma Etching
Explores sheath formation, plasma etching, ion velocity, and energy in industrial plasmas, emphasizing their significance for modern electronics manufacturing.
Show more
Related publications (18)

Re-design of EU DEMO with a low aspect ratio

Hartmut Zohm

The design point that had been chosen for EU DEMO in 2016 is reviewed here and a modification is proposed with a lower aspect ratio. Previously the same aspect ratio, A, was chosen for EU DEMO as in major tokamak experiments including ITER (A = 3.1), and, ...
2024

Design of an intake and a thruster for an atmosphere-breathing electric propulsion system

Francesco Romano, Thomas Binderup Jensen

Challenging space missions include those at very low altitudes, where the atmosphere is the source of aerodynamic drag on the spacecraft, that finally defines the mission's lifetime, unless a way to compensate for it is provided. This environment is named ...
2022

From pulsed-DCMS and HiPIMS to microwave plasma-assisted sputtering: Their influence on the properties of diamond-like carbon films

Aïcha Hessler-Wyser, Johann Michler, Caroline Hain, David Brown, Thomas Nelis

The fabrication of high-hardness non-hydrogenated diamond-like carbon (DLC) via standard magnetron sputtering (MS) is often hindered by the low sputtering yields and ionisation rates of carbon, therefore investigations into pulsed alternatives of MS, else ...
ELSEVIER SCIENCE SA2022
Show more
Related people (2)
Related concepts (8)
Propellant
A propellant (or propellent) is a mass that is expelled or expanded in such a way as to create a thrust or another motive force in accordance with Newton's third law of motion, and "propel" a vehicle, projectile, or fluid payload. In vehicles, the engine that expels the propellant is called a reaction engine. Although technically a propellant is the reaction mass used to create thrust, the term "propellant" is often used to describe a substance which contains both the reaction mass and the fuel that holds the energy used to accelerate the reaction mass.
Variable Specific Impulse Magnetoplasma Rocket
The Variable Specific Impulse Magnetoplasma Rocket (VASIMR) is an electrothermal thruster under development for possible use in spacecraft propulsion. It uses radio waves to ionize and heat an inert propellant, forming a plasma, then a magnetic field to confine and accelerate the expanding plasma, generating thrust. It is a plasma propulsion engine, one of several types of spacecraft electric propulsion systems. The VASIMR method for heating plasma was originally developed during nuclear fusion research.
Spacecraft electric propulsion
Spacecraft electric propulsion (or just electric propulsion) is a type of spacecraft propulsion technique that uses electrostatic or electromagnetic fields to accelerate mass to high speed and thus generate thrust to modify the velocity of a spacecraft in orbit. The propulsion system is controlled by power electronics. Electric thrusters typically use much less propellant than chemical rockets because they have a higher exhaust speed (operate at a higher specific impulse) than chemical rockets.
Show more
Related MOOCs (2)
Space Mission Design and Operations
Learn the concepts used in the design of space missions, manned or unmanned, and operations, based on the professional experience of the lecturer.
Space Mission Design and Operations
Learn the concepts used in the design of space missions, manned or unmanned, and operations, based on the professional experience of the lecturer.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.