Summary
Folding@home (FAH or F@h) is a distributed computing project aimed to help scientists develop new therapeutics for a variety of diseases by the means of simulating protein dynamics. This includes the process of protein folding and the movements of proteins, and is reliant on simulations run on volunteers' personal computers. Folding@home is currently based at the University of Pennsylvania and led by Greg Bowman, a former student of Vijay Pande. The project utilizes graphics processing units (GPUs), central processing units (CPUs), and ARM processors like those on the Raspberry Pi for distributed computing and scientific research. The project uses statistical simulation methodology that is a paradigm shift from traditional computing methods. As part of the client–server model network architecture, the volunteered machines each receive pieces of a simulation (work units), complete them, and return them to the project's database servers, where the units are compiled into an overall simulation. Volunteers can track their contributions on the Folding@home website, which makes volunteers' participation competitive and encourages long-term involvement. Folding@home is one of the world's fastest computing systems. With heightened interest in the project as a result of the COVID-19 pandemic, the system achieved a speed of approximately 1.22 exaflops by late March 2020 and reached 2.43 exaflops by April 12, 2020, making it the world's first exaflop computing system. This level of performance from its large-scale computing network has allowed researchers to run computationally costly atomic-level simulations of protein folding thousands of times longer than formerly achieved. Since its launch on October 1, 2000, Folding@home was involved in the production of 226 scientific research papers. Results from the project's simulations agree well with experiments. Proteins are an essential component to many biological functions and participate in virtually all processes within biological cells.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (4)
PHYS-441: Statistical physics of biomacromolecules
Introduction to the application of the notions and methods of theoretical physics to problems in biology.
BIO-212: Biological chemistry I
Biochemistry is a key discipline for the Life Sciences. Biological Chemistry I and II are two tightly interconnected courses that aim to describe and understand in molecular terms the processes that m
PHYS-202: Analytical mechanics (for SPH)
Présentation des méthodes de la mécanique analytique (équations de Lagrange et de Hamilton) et introduction aux notions de modes normaux et de stabilité.
Show more