Folding@home (FAH or F@h) is a distributed computing project aimed to help scientists develop new therapeutics for a variety of diseases by the means of simulating protein dynamics. This includes the process of protein folding and the movements of proteins, and is reliant on simulations run on volunteers' personal computers. Folding@home is currently based at the University of Pennsylvania and led by Greg Bowman, a former student of Vijay Pande.
The project utilizes graphics processing units (GPUs), central processing units (CPUs), and ARM processors like those on the Raspberry Pi for distributed computing and scientific research. The project uses statistical simulation methodology that is a paradigm shift from traditional computing methods. As part of the client–server model network architecture, the volunteered machines each receive pieces of a simulation (work units), complete them, and return them to the project's database servers, where the units are compiled into an overall simulation. Volunteers can track their contributions on the Folding@home website, which makes volunteers' participation competitive and encourages long-term involvement.
Folding@home is one of the world's fastest computing systems. With heightened interest in the project as a result of the COVID-19 pandemic, the system achieved a speed of approximately 1.22 exaflops by late March 2020 and reached 2.43 exaflops by April 12, 2020, making it the world's first exaflop computing system. This level of performance from its large-scale computing network has allowed researchers to run computationally costly atomic-level simulations of protein folding thousands of times longer than formerly achieved. Since its launch on October 1, 2000, Folding@home was involved in the production of 226 scientific research papers. Results from the project's simulations agree well with experiments.
Proteins are an essential component to many biological functions and participate in virtually all processes within biological cells.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Biochemistry is a key discipline for the Life Sciences. Biological Chemistry I and II are two tightly interconnected courses that aim to describe and understand in molecular terms the processes that m
Présentation des méthodes de la mécanique analytique (équations de Lagrange et de Hamilton) et introduction aux notions de modes normaux et de stabilité.
Blue Gene is an IBM project aimed at designing supercomputers that can reach operating speeds in the petaFLOPS (PFLOPS) range, with low power consumption. The project created three generations of supercomputers, Blue Gene/L, Blue Gene/P, and Blue Gene/Q. During their deployment, Blue Gene systems often led the TOP500 and Green500 rankings of the most powerful and most power-efficient supercomputers, respectively. Blue Gene systems have also consistently scored top positions in the Graph500 list.
Rosetta is a software package for protein structure prediction. Originally introduced by the Baker laboratory at the University of Washington in 1998 as an ab initio approach to structure prediction, Rosetta has since branched into several development streams and distinct services, providing features such as macromolecular docking and protein design. Many of the graduate students and other researchers involved in Rosetta's initial development have since moved to other universities and research institutions, and subsequently enhanced different parts of the Rosetta project.
The Berkeley Open Infrastructure for Network Computing (BOINC, pronounced bɔɪŋk – rhymes with "oink") is an open-source middleware system for volunteer computing (a type of distributed computing). Developed originally to support SETI@home, it became the platform for many other applications in areas as diverse as medicine, molecular biology, mathematics, linguistics, climatology, environmental science, and astrophysics, among others. The purpose of BOINC is to enable researchers to utilize processing resources of personal computers and other devices around the world.
The landscape of computing is changing, thanks to the advent of modern networking equipment that allows machines to exchange information in as little as one microsecond. Such advancement has enabled microsecond-scale distributed computing, where entire dis ...
Real-world samples of graphene often exhibit various types of out-of-plane disorder-ripples, wrinkles and folds-introduced at the stage of growth and transfer processes. These complex out-of-plane defects resulting from the interplay between self-adhesion ...
The complexity of biological systems and processes, spanning molecular to macroscopic scales, necessitates the use of multiscale simulations to get a comprehensive understanding. lar dynamics (MD) simulations are crucial for capturing processes beyond the ...