Concept

Set theory (music)

Summary
Musical set theory provides concepts for categorizing musical objects and describing their relationships. Howard Hanson first elaborated many of the concepts for analyzing tonal music. Other theorists, such as Allen Forte, further developed the theory for analyzing atonal music, drawing on the twelve-tone theory of Milton Babbitt. The concepts of musical set theory are very general and can be applied to tonal and atonal styles in any equal temperament tuning system, and to some extent more generally than that. One branch of musical set theory deals with collections (sets and permutations) of pitches and pitch classes (pitch-class set theory), which may be ordered or unordered, and can be related by musical operations such as transposition, melodic inversion, and complementation. Some theorists apply the methods of musical set theory to the analysis of rhythm as well. Although musical set theory is often thought to involve the application of mathematical set theory to music, there are numerous differences between the methods and terminology of the two. For example, musicians use the terms transposition and inversion where mathematicians would use translation and reflection. Furthermore, where musical set theory refers to ordered sets, mathematics would normally refer to tuples or sequences (though mathematics does speak of ordered sets, and although these can be seen to include the musical kind in some sense, they are far more involved). Moreover, musical set theory is more closely related to group theory and combinatorics than to mathematical set theory, which concerns itself with such matters as, for example, various sizes of infinitely large sets. In combinatorics, an unordered subset of objects, such as pitch classes, is called a combination, and an ordered subset a permutation. Musical set theory is better regarded as an application of combinatorics to music theory than as a branch of mathematical set theory. Its main connection to mathematical set theory is the use of the vocabulary of set theory to talk about finite sets.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.