In physics, a surface wave is a mechanical wave that propagates along the interface between differing media. A common example is gravity waves along the surface of liquids, such as ocean waves. Gravity waves can also occur within liquids, at the interface between two fluids with different densities. Elastic surface waves can travel along the surface of solids, such as Rayleigh or Love waves. Electromagnetic waves can also propagate as "surface waves" in that they can be guided along with a refractive index gradient or along an interface between two media having different dielectric constants. In radio transmission, a ground wave is a guided wave that propagates close to the surface of the Earth. In seismology, several types of surface waves are encountered. Surface waves, in this mechanical sense, are commonly known as either Love waves (L waves) or Rayleigh waves. A seismic wave is a wave that travels through the Earth, often as the result of an earthquake or explosion. Love waves have transverse motion (movement is perpendicular to the direction of travel, like light waves), whereas Rayleigh waves have both longitudinal (movement parallel to the direction of travel, like sound waves) and transverse motion. Seismic waves are studied by seismologists and measured by a seismograph or seismometer. Surface waves span a wide frequency range, and the period of waves that are most damaging is usually 10 seconds or longer. Surface waves can travel around the globe many times from the largest earthquakes. Surface waves are caused when P waves and S waves come to the surface. Examples are the waves at the surface of water and air (ocean surface waves). Another example is internal waves, which can be transmitted along the interface of two water masses of different densities. In theory of hearing physiology, the traveling wave (TW) of Von Bekesy, resulted from an acoustic surface wave of the basilar membrane into the cochlear duct. His theory purported to explain every feature of the auditory sensation owing to these passive mechanical phenomena.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (32)
EE-575: Wave propagation along transmission lines
In this lecture, we will describe the theoretical models and computational methods for the analysis of wave propagation along transmission lines.
PHYS-325: Introduction to plasma physics
Introduction à la physique des plasmas destinée à donner une vue globale des propriétés essentielles et uniques d'un plasma et à présenter les approches couramment utilisées pour modéliser son comport
PHYS-201(d): General physics: electromagnetism
The topics covered by the course are concepts of fluid mechanics, waves, and electromagnetism.
Show more
Related lectures (200)
Magnetohydrodynamics: Plasma Physics
Covers the physics of plasmas, emphasizing magnetohydrodynamics and energy conversion processes.
Plasma Physics Fundamentals
Covers the basics of plasma physics, focusing on magnetic confinement and field effects on particles.
Shallow Water Equations: Stability and Analysis
Explores shallow water equations, stability analysis, and variable phase speed in tsunami scenarios.
Show more
Related publications (313)

Optothermal shaping of lamb waves with square and spiral phase fronts

Romain Christophe Rémy Fleury, Janez Rus, Aleksi Antoine Bossart

We introduce a Lamb-wave medium with tunable propagation velocities, which are controlled by a two-dimensional heating pattern produced by a laser beam. We utilized it to demonstrate that waves in an appropriately designed medium can propagate in the form ...
2024

Spatiotemporal energy‐density distribution of time‐reversed electromagnetic fields

Marcos Rubinstein, Farhad Rachidi-Haeri, Hamidreza Karami, Elias Per Joachim Le Boudec, Nicolas Mora Parra

Time reversal exploits the invariance of electromagnetic wave propagation in reciprocal and lossless media to localize radiating sources. Time-reversed measurements are back-propagated in a simulated domain and converge to the unknown source location. The ...
2024

Oblique streaming waves observed in multipactor-induced plasma discharge above a dielectric surface

Haomin Sun, Guang-Yu Sun

In a recent discovery (Wen et al 2022 Phys. Rev. Lett. 129 045001), streaming waves were found in multipactor-induced plasma discharges. However, due to the limitations of a 1D simulation setup, these waves displayed only transverse dynamics. In this lette ...
2024
Show more
Related concepts (26)
Radio wave
Radio waves are a type of electromagnetic radiation with the longest wavelengths in the electromagnetic spectrum, typically with frequencies of 300 gigahertz (GHz) and below. At 300 GHz, the corresponding wavelength is 1mm, which is shorter than the diameter of a grain of rice. At 30 Hz the corresponding wavelength is ~, which is longer than the radius of the Earth. Wavelength of a radio wave is inversely proportional to its frequency, because its velocity is constant.
Love wave
In elastodynamics, Love waves, named after Augustus Edward Hough Love, are horizontally polarized surface waves. The Love wave is a result of the interference of many shear waves (S-waves) guided by an elastic layer, which is welded to an elastic half space on one side while bordering a vacuum on the other side. In seismology, Love waves (also known as Q waves (Quer: German for lateral)) are surface seismic waves that cause horizontal shifting of the Earth during an earthquake.
Rayleigh wave
Rayleigh waves are a type of surface acoustic wave that travel along the surface of solids. They can be produced in materials in many ways, such as by a localized impact or by piezo-electric transduction, and are frequently used in non-destructive testing for detecting defects. Rayleigh waves are part of the seismic waves that are produced on the Earth by earthquakes. When guided in layers they are referred to as Lamb waves, Rayleigh–Lamb waves, or generalized Rayleigh waves.
Show more
Related MOOCs (5)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.