In physics and engineering, in particular fluid dynamics, the volumetric flow rate (also known as volume flow rate, or volume velocity) is the volume of fluid which passes per unit time; usually it is represented by the symbol Q (sometimes ). It contrasts with mass flow rate, which is the other main type of fluid flow rate. In most contexts a mention of rate of fluid flow is likely to refer to the volumetric rate. In hydrometry, the volumetric flow rate is known as discharge.
Volumetric flow rate should not be confused with volumetric flux, as defined by Darcy's law and represented by the symbol q, with units of m3/(m2·s), that is, m·s−1. The integration of a flux over an area gives the volumetric flow rate.
The SI unit is cubic metres per second (m3/s). Another unit used is standard cubic centimetres per minute (SCCM). In US customary units and imperial units, volumetric flow rate is often expressed as cubic feet per second (ft3/s) or gallons per minute (either US or imperial definitions). In oceanography, the sverdrup (symbol: Sv, not to be confused with the sievert) is a non-SI metric unit of flow, with 1 Sv equal to ; it is equivalent to the SI derived unit cubic hectometer per second (symbol: hm3/s or hm3⋅s−1). Named after Harald Sverdrup, it is used almost exclusively in oceanography to measure the volumetric rate of transport of ocean currents.
Volumetric flow rate is defined by the limit
that is, the flow of volume of fluid V through a surface per unit time t.
Since this is only the time derivative of volume, a scalar quantity, the volumetric flow rate is also a scalar quantity. The change in volume is the amount that flows after crossing the boundary for some time duration, not simply the initial amount of volume at the boundary minus the final amount at the boundary, since the change in volume flowing through the area would be zero for steady flow.
IUPAC prefers the notation and for volumetric flow and mass flow respectively, to distinguish from the notation for heat.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Le cours est une introduction à la théorie des valeurs extrêmes et son utilisation pour la gestion des risques hydrologiques (essentiellement crues). Une ouverture plus large sur la gestion des danger
This course aims to provide theoretical fundamentals in flow measurement science, and advanced knowledge regarding measurement methods, tools and instrumentation applied to experimental hydraulics, in
This course provides practical experience in the numerical simulation of fluid flows. Numerical methods are presented in the framework of the finite volume method. A simple solver is developed with Ma
Darcy's law is an equation that describes the flow of a fluid through a porous medium. The law was formulated by Henry Darcy based on results of experiments on the flow of water through beds of sand, forming the basis of hydrogeology, a branch of earth sciences. It is analogous to Ohm's law in electrostatics, linearly relating the volume flow rate of the fluid to the hydraulic head difference (which is often just proportional to the pressure difference) via the hydraulic conductivity.
In fluid mechanics, the Reynolds number (Re) is a dimensionless quantity that helps predict fluid flow patterns in different situations by measuring the ratio between inertial and viscous forces. At low Reynolds numbers, flows tend to be dominated by laminar (sheet-like) flow, while at high Reynolds numbers, flows tend to be turbulent. The turbulence results from differences in the fluid's speed and direction, which may sometimes intersect or even move counter to the overall direction of the flow (eddy currents).
In fluid mechanics and hydraulics, open-channel flow is a type of liquid flow within a conduit with a free surface, known as a channel. The other type of flow within a conduit is pipe flow. These two types of flow are similar in many ways but differ in one important respect: open-channel flow has a free surface, whereas pipe flow does not. Open-channel flow can be classified and described in various ways based on the change in flow depth with respect to time and space.
Ionic wind, produced by electrohydrodynamic (EHD) processes, holds promise for efficient airflow generation using minimal power. However, practical applications have been limited by relatively low flow rates. This study introduces a novel prototype device ...
We consider fluid flows, governed by the Navier-Stokes equations, subject to a steady symmetry-breaking bifurcation and forced by a weak noise acting on a slow timescale. By generalizing the multiple-scale weakly nonlinear expansion technique employed in t ...
BackgroundImpaired cerebrospinal fluid (CSF) dynamics is involved in the pathophysiology of neurodegenerative diseases of the central nervous system and the optic nerve (ON), including Alzheimer's and Parkinson's disease, as well as frontotemporal dementia ...