En mécanique des fluides, le , noté , est un nombre sans dimension caractéristique de la transition laminaire-turbulent. Il est mis en évidence en par Osborne Reynolds. Le nombre de Reynold est applicable à tout écoulement de fluide visqueux, et prévoit son régime. Pour des petites valeurs de , le régime est dominé par la viscosité et l'écoulement est laminaire. Pour les grandes valeurs de , le régime est dominé par l'inertie et l'écoulement est turbulent. Le nombre de Reynolds se calcule par le rapport des forces d'inertie sur les forces visqueuses des équations de Navier-Stokes. avec : la vitesse de l'écoulement ; la masse volumique du fluide ; la viscosité dynamique du fluide ; l'opérateur gradient ; l'opérateur laplacien. On approxime alors les dérivées spatiales de à l'ordre de grandeur de sur la distance caractéristique d'évolution de dans la direction correspondante. avec : un ordre de grandeur de la vitesse du fluide ; la longueur caractéristique sur laquelle varie . En pratique, est la longueur de la plaque, le diamètre du cylindre, etc. Pour un fluide connu, une simplification courante consiste à prendre le nombre de Reynolds comme le produit de trois termes : la vitesse du fluide, la longueur caractéristique, et la viscosité cinématique définie par . Le nombre de Reynold s'écrit alors La viscosité cinématique vaut à peu près : dans l'air (en « atmosphère standard ») ; dans l'eau douce à ; dans l'eau de mer à , un peu plus visqueuse que l'eau douce. Ainsi un ballon de football de propulsé à (soit ) navigue à un Reynolds de . De même, une aile de de corde volant à (ou ) navigue à un Reynolds de . Tandis que le Reynolds d'un insecte de volant à dans l'air n'est que 70. Ces approximations rapides du nombre de Reynolds sont souvent utiles dans la mesure où les effets du Reynolds sont souvent progressifs (en dehors d'éventuelles plages critiques), ce qui explique que pour représenter les effets du Reynolds, on le représente la plupart du temps en abscisses logarithmiques.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (31)
ME-446: Liquid-gas interfacial heat and mass transfer
This course covers the fundamental and practical analysis of liquid-gas interfacial heat and mass transfer in various contexts including power generation, water purification, and cooling. Students wil
ME-341: Heat and mass transfer
This course covers fundamentals of heat transfer and applications to practical problems. Emphasis will be on developing a physical and analytical understanding of conductive, convective, and radiative
ChE-408: Process intensification and green chemistry
The first part of the course (~20%) is devoted to green chemistry and life cycle assessment. The remainder focuses on process intensification (fundamentals, detailed description of a few selected te
Afficher plus
Concepts associés (29)
Similitude
Similitude is a concept applicable to the testing of engineering models. A model is said to have similitude with the real application if the two share geometric similarity, kinematic similarity and dynamic similarity. Similarity and similitude are interchangeable in this context. The term dynamic similitude is often used as a catch-all because it implies that geometric and kinematic similitude have already been met. Similitude's main application is in hydraulic and aerospace engineering to test fluid flow conditions with scaled models.
Tourbillon (physique)
vignette|upright=0.65|Tourbillon d'eau dans une bouteille. Un tourbillon est, en dynamique des fluides, une région d'un fluide dans laquelle l'écoulement est principalement un mouvement de rotation autour d'un axe, rectiligne ou incurvé. Ce type de mouvement s'appelle écoulement tourbillonnaire. On en observe à toutes les échelles, depuis le tourbillon de vidange d'une baignoire jusqu'à ceux des atmosphères des planètes, en passant par les sillages observés au voisinage d'un obstacle situé dans un écoulement liquide ou gazeux.
Écoulement laminaire
En mécanique des fluides, l'écoulement laminaire est le mode d'écoulement d'un fluide où l'ensemble du fluide s'écoule plus ou moins dans la même direction, sans que les différences locales se contrarient (par opposition au régime turbulent, fait de tourbillons qui se contrarient mutuellement). L'écoulement laminaire est généralement celui qui est recherché lorsqu'on veut faire circuler un fluide dans un tuyau (car il crée moins de pertes de charge), ou faire voler un avion (car il est plus stable, et prévisible par les équations).
Afficher plus
MOOCs associés (6)
Mécanique des Fluides
Ce cours de base est composé des sept premiers modules communs à deux cours bachelor, donnés à l’EPFL en génie mécanique et génie civil.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.