High-performance plastics are plastics that meet higher requirements than standard or engineering plastics. They are more expensive and used in smaller amounts. Plastic#Special purpose plastics High performance plastics differ from standard plastics and engineering plastics primarily by their temperature stability, but also by their chemical resistance and mechanical properties, production quantity, and price. There are many synonyms for the term high-performance plastics, such as: high temperature plastics, high-performance polymers, high performance thermoplastics or high-tech plastics. The name high temperature plastics is in use due to their continuous service temperature (CST), which is always higher than 150 °C by definition (although this is not their only feature, as it can be seen above). The term "polymers" is often used instead of "plastics" because both terms are used as synonyms in the field of engineering. If the term "high-performance thermoplastics" is used, it is because both standard and technical as well as high-performance plastics are always thermoplastics. Thermosets and elastomers are outside of this classification and form their own classes. However, the differentiation from less powerful plastics has varied over time; while nylon and poly(ethylene terephthalate) were initially considered powerful plastics, they are now ordinary. The improvement of mechanical properties and thermal stability is and has always been an important goal in the research of new plastics. Since the early 1960s, the development of high-performance plastics has been driven by corresponding needs in the aerospace and nuclear technology. Synthetic routes for example for PPS, PES and PSU were developed in the 1960s by Philips, ICI and Union Carbide. The market entry took place in the early 70s. A production of PEEK (ICI), PEK (ICI) and PEI (General Electric and GE) via polycondensation was developed in the 1970s. PEK was offered since 1972 by Raychem, however, made by an electrophilic synthesis.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (11)
ME-105: Introduction to mechanical design
Le cours de ME-105 vise à l'acquisition du langage normalisé de la communication technique en conception mécanique et d'une culture technique de base, via une revue des concepts, composants, et méthod
MSE-341: Sustainability and materials
The aim of the course is to provide an overview of sustainability issues as they relate to materials science.
MSE-430: Life cycle engineering of polymers
Students understand what life cycle engineering is and apply this methodology to adapt and improve the durability of polymer-based products. They understand how to recycle these materials and are able
Afficher plus
Séances de cours associées (31)
Valorisation chimique des plastiques
Couvre la valorisation chimique des plastiques par divers procédés et catalyseurs.
Chimie organique: base carbone et recherche sur la matière molle
Couvre les principes fondamentaux de la chimie organique, en se concentrant sur le rôle du carbone dans la science des polymères et la recherche sur la matière molle.
Plastiques: Fabrication Physique
Plongez dans le succès et les défis des plastiques, des processus de recyclage et des techniques de fabrication.
Afficher plus
Publications associées (34)

Photodegradation of biodegradable plastics in aquatic environments: Current understanding and challenges

Florian Frédéric Vincent Breider, Vinhteang Kaing

Direct photolysis and indirect photolysis are important abiotic processes in aquatic environments through which plastics can be transformed physically and chemically. Transport of biodegradable plastics in water is influenced by vertical mixing and turbule ...
2023

Acetal-Stabilized Carbohydrates as Novel Platform Molecules for Renewable Polymer Production

Lorenz Perry Manker

To address the rising demand for plastics, it is essential to create new types of polymers that are both highly recyclable and emit minimal amounts of greenhouse gases. These plastics should be derived from readily available, renewable feedstocks. Such eff ...
EPFL2023

Supramolecular Modifications of Semicrystalline Polymers

Michael Alan Giffin

Supramolecular interactions play an important role in defining the structure and the resulting mechanical properties of materials. For instance, interchain hydrogen-bonding in PAs gives them superior strength and stiffness in engineering materials, while t ...
EPFL2023
Afficher plus
Concepts associés (6)
Engineering plastic
Engineering plastics are a group of plastic materials that have better mechanical and/or thermal properties than the more widely used commodity plastics (such as polystyrene, polyvinyl chloride, polypropylene and polyethylene). Being more expensive than standard plastics, engineering plastics are produced in lower quantities and tend to be used for smaller objects or low-volume applications (such as mechanical parts), rather than for bulk and high-volume ends (like containers and packaging).
Matière plastique
vignette|Les matières plastiques font désormais partie de notre quotidien. Structure typique d'une formule : matière plastique = polymère(s) brut(s) (résine(s) de base) + charges + plastifiants + additifs. Les élastomères sont souvent classés hors des matières plastiques proprement dites. Une matière plastique (le plastique en langage courant) est un polymère généralement mélangé à des additifs, colorants, charges (miscibles ou non dans la matrice polymère).
Bisphénol A
Le bisphénol A (BPA) est un composé organique de la famille des aromatiques, utilisé principalement dans la fabrication de plastiques et de résines. Obtenue par réaction entre deux équivalents de phénol et un équivalent d'acétone, sa molécule comporte deux groupements fonctionnels phénol. Il est aussi dénommé 4,4'-(propan-2-ylidène)diphénol ou p, p'-isopropylidènebisphénol.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.