Concept

Dalton (unit)

Summary
The dalton or unified atomic mass unit (symbols: Da or u) is a non-SI unit of mass defined as 1/12 of the mass of an unbound neutral atom of carbon-12 in its nuclear and electronic ground state and at rest. The atomic mass constant, denoted mu, is defined identically, giving mu = 1/12 m(^12C) = 1 Da. This unit is commonly used in physics and chemistry to express the mass of atomic-scale objects, such as atoms, molecules, and elementary particles, both for discrete instances and multiple types of ensemble averages. For example, an atom of helium-4 has a mass of 4.0026Da. This is an intrinsic property of the isotope and all helium-4 atoms have the same mass. Acetylsalicylic acid (aspirin), C9H8O4, has an average mass of about 180.157Da. However, there are no acetylsalicylic acid molecules with this mass. The two most common masses of individual acetylsalicylic acid molecules are 180.0423Da, having the most common isotopes, and 181.0456Da, in which one carbon is carbon-13. The molecular masses of proteins, nucleic acids, and other large polymers are often expressed with the units kilodalton (kDa) and megadalton (MDa). Titin, one of the largest known proteins, has a molecular mass of between 3 and 3.7 megadaltons. The DNA of chromosome 1 in the human genome has about 249 million base pairs, each with an average mass of about 650Da, or 156GDa total. The mole is a unit of amount of substance, widely used in chemistry and physics, which was originally defined so that the mass of one mole of a substance, in grams, would be numerically equal to the average mass of one of its constituent particles, in daltons. That is, the molar mass of a chemical compound was meant to be numerically equal to its average molecular mass. For example, the average mass of one molecule of water is about 18.0153 daltons, and one mole of water is about 18.0153 grams. A protein whose molecule has an average mass of 64kDa would have a molar mass of 64kg/mol. However, while this equality can be assumed for almost all practical purposes, it is now only approximate, because of the way mole was redefined on 20 May 2019.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.