Productivity is the efficiency of production of goods or services expressed by some measure. Measurements of productivity are often expressed as a ratio of an aggregate output to a single input or an aggregate input used in a production process, i.e. output per unit of input, typically over a specific period of time. The most common example is the (aggregate) labour productivity measure, one example of which is GDP per worker. There are many different definitions of productivity (including those that are not defined as ratios of output to input) and the choice among them depends on the purpose of the productivity measurement and data availability. The key source of difference between various productivity measures is also usually related (directly or indirectly) to how the outputs and the inputs are aggregated to obtain such a ratio-type measure of productivity.
Productivity is a crucial factor in the production performance of firms and nations. Increasing national productivity can raise living standards because more real income improves people's ability to purchase goods and services, enjoy leisure, improve housing, and education and contribute to social and environmental programs. Productivity growth can also help businesses to be more profitable.
Partial productivity
Productivity measures that use one class of inputs or factors, but not multiple factors, are called partial productivities. In practice, measurement in production means measures of partial productivity. Interpreted correctly, these components are indicative of productivity development, and approximate the efficiency with which inputs are used in an economy to produce goods and services. However, productivity is only measured partially – or approximately. In a way, the measurements are defective because they do not measure everything, but it is possible to interpret correctly the results of partial productivity and to benefit from them in practical situations. At the company level, typical partial productivity measures are such things as worker hours, materials or energy used per unit of production.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
En articulant des savoirs théoriques et architecturaux, avec des savoirs socio-politiques, l'UE vise à construire un imaginaire autour de l'habitat productif, faisant revoisiner les question du logeme
Ce cours traite centralement de l'innovation comme réponse essentielle aux grandes crises de notre temps - ce que l'on appelle aujourd'hui les grands défis sociétaux. Le cours alternera présentations
This course examines growth from various angles: economic growth, growth in the use of resources, need for growth, limits to growth, sustainable growth, and, if time permits, population growth and gro
In microeconomics, economies of scale are the cost advantages that enterprises obtain due to their scale of operation, and are typically measured by the amount of output produced per unit of time. A decrease in cost per unit of output enables an increase in scale. At the basis of economies of scale, there may be technical, statistical, organizational or related factors to the degree of market control. This is just a partial description of the concept.
Production is the process of combining various inputs, both material (such as metal, wood, glass, or plastics) and immaterial (such as plans, or knowledge) in order to create output. Ideally this output will be a good or service which has value and contributes to the utility of individuals. The area of economics that focuses on production is called production theory, and it is closely related to the consumption (or consumer) theory of economics. The production process and output directly result from productively utilising the original inputs (or factors of production).
The Second Industrial Revolution, also known as the Technological Revolution, was a phase of rapid scientific discovery, standardization, mass production and industrialization from the late 19th century into the early 20th century. The First Industrial Revolution, which ended in the middle of the 19th century, was punctuated by a slowdown in important inventions before the Second Industrial Revolution in 1870.
Explores axonometric projections, intersections, cuts, and the history of standardization in mechanical construction, emphasizing the importance of norms in enhancing productivity and reducing costs.
For the manufacturing of complex biopharmaceuticals using bioreactors with cultivated mammalian cells, high product concentration is an important objective. The phenotype of the cells in a reactor plays an important role. Are clonal cell populations showin ...
MDPI2021
, ,
In the context of extra-terrestrial missions, the effects of hypogravity (0 < G < 1) on the human body can reduce the well-being of the crew, cause musculoskeletal problems and affect their ability to perform tasks, especially during long-term missions. To ...
This study applies Six-Sigma DMAIC methodology to enhance the efficiency of a manufacturing production line, specifically targeting the "gaps" between planned and actual working time. Key findings reveal that meetings, scanning, follow-up activities, walki ...