Bayesian hierarchical modelling is a statistical model written in multiple levels (hierarchical form) that estimates the parameters of the posterior distribution using the Bayesian method. The sub-models combine to form the hierarchical model, and Bayes' theorem is used to integrate them with the observed data and account for all the uncertainty that is present. The result of this integration is the posterior distribution, also known as the updated probability estimate, as additional evidence on the prior distribution is acquired. Frequentist statistics may yield conclusions seemingly incompatible with those offered by Bayesian statistics due to the Bayesian treatment of the parameters as random variables and its use of subjective information in establishing assumptions on these parameters. As the approaches answer different questions the formal results aren't technically contradictory but the two approaches disagree over which answer is relevant to particular applications. Bayesians argue that relevant information regarding decision-making and updating beliefs cannot be ignored and that hierarchical modeling has the potential to overrule classical methods in applications where respondents give multiple observational data. Moreover, the model has proven to be robust, with the posterior distribution less sensitive to the more flexible hierarchical priors. Hierarchical modeling is used when information is available on several different levels of observational units. For example, in epidemiological modeling to describe infection trajectories for multiple countries, observational units are countries, and each country has its own temporal profile of daily infected cases. In decline curve analysis to describe oil or gas production decline curve for multiple wells, observational units are oil or gas wells in a reservoir region, and each well has each own temporal profile of oil or gas production rates (usually, barrels per month). Data structure for the hierarchical modeling retains nested data structure.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (8)
MATH-232: Probability and statistics (for IC)
A basic course in probability and statistics
MATH-562: Statistical inference
Inference from the particular to the general based on probability models is central to the statistical method. This course gives a graduate-level account of the main ideas of statistical inference.
PHYS-436: Statistical physics IV
Noise and fluctuations play a crucial role in science and technology. This course treats stochastic methods, applying them to both classical problems and quantum systems. It emphasizes the frameworks
Show more
Related lectures (27)
Dirichlet-Multinomial Model
Discusses the Dirichlet distribution, Bayesian inference, posterior mean and variance, conjugate priors, and predictive distribution in the Dirichlet-Multinomial model.
Modern Regression: Smoothing and Modelling Choices
Explores roughness penalty, band matrices, and Bayesian inference in regression smoothing.
Bayesian Estimation
Covers the fundamentals of Bayesian estimation, focusing on the application of Bayes' Theorem in scalar estimation.
Show more
Related publications (75)

Spatiotemporal wildfire modeling through point processes with moderate and extreme marks

Jonathan Koh Boon Han

Accurate spatiotemporal modeling of conditions leading to moderate and large wildfires provides better understanding of mechanisms driving fire-prone ecosystems and improves risk management. Here, we develop a joint model for the occurrence intensity and t ...
2023

From Probability Graphical Models to Dynamic Networks — A Bayesian perspective on Smooth Best Estimate of Trajectory with applications in Geodetic Engineering

Laurent Valentin Jospin, Jesse Ray Murray Lahaye

Bayesian statistics is concerned with the integration of new information obtained through observations with prior knowledge, and accordingly, is often related to information theory (Jospin 2022). Recursive Bayesian estimation methods, such as Kalman Filter ...
2023

TOCOSMO VIII. A key test of systematics in the hierarchical method of time-delay cosmography

Frédéric Courbin

The largest source of systematic errors in the time-delay cosmography method likely arises from the lens model mass distribution, where an inaccurate choice of model could in principle bias the value of H-0. A Bayesian hierarchical framework has been propo ...
EDP SCIENCES S A2022
Show more
Related concepts (1)
Bayesian inference
Bayesian inference (ˈbeɪziən or ˈbeɪʒən ) is a method of statistical inference in which Bayes' theorem is used to update the probability for a hypothesis as more evidence or information becomes available. Bayesian inference is an important technique in statistics, and especially in mathematical statistics. Bayesian updating is particularly important in the dynamic analysis of a sequence of data. Bayesian inference has found application in a wide range of activities, including science, engineering, philosophy, medicine, sport, and law.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.