A carbonate platform is a sedimentary body which possesses topographic relief, and is composed of autochthonic calcareous deposits. Platform growth is mediated by sessile organisms whose skeletons build up the reef or by organisms (usually microbes) which induce carbonate precipitation through their metabolism. Therefore, carbonate platforms can not grow up everywhere: they are not present in places where limiting factors to the life of reef-building organisms exist. Such limiting factors are, among others: light, water temperature, transparency and pH-Value. For example, carbonate sedimentation along the Atlantic South American coasts takes place everywhere but at the mouth of the Amazon River, because of the intense turbidity of the water there. Spectacular examples of present-day carbonate platforms are the Bahama Banks under which the platform is roughly 8 km thick, the Yucatan Peninsula which is up to 2 km thick, the Florida platform, the platform on which the Great Barrier Reef is growing, and the Maldive atolls. All these carbonate platforms and their associated reefs are confined to tropical latitudes. Today's reefs are built mainly by scleractinian corals, but in the distant past other organisms, like archaeocyatha (during the Cambrian) or extinct cnidaria (tabulata and rugosa) were important reef builders.
What makes carbonate platform environments different from other depositional environments is that carbonate is a product of precipitation, rather than being a sediment transported from elsewhere, as for sand or gravel. This implies for example that carbonate platforms may grow far from the coastlines of continents, as for the Pacific atolls.
The mineralogic composition of carbonate platforms may be either calcitic or aragonitic. Seawater is oversaturated in carbonate, so under certain conditions CaCO3 precipitation is possible. Carbonate precipitation is thermodynamically favoured at high temperature and low pressure. Three types of carbonate precipitation are possible: biotically controlled, biotically induced and abiotic.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
It was argued that, in contrast to all known modern scleractinian corals that form aragonite skeletons, the original mineralogy of the Cretaceous "Coelosmilia" (ca. 70-65 Ma) was calcite during a period when the Mg2+/Ca2+ ratio of the seawater was presumab ...
Changes in seawater chemistry have affected the evolution of calcifying marine organisms, including their skeletal polymorph (calcite versus aragonite), which is believed to have been strongly influenced by the Mg/Ca ratio at the time these animals first e ...
Geological Soc Amer, Inc2016
, , ,
A large fraction (47%) of the world’s uranium is mined by a technique called “In Situ Recovery”. This mining technique involves the injection of a leaching fluid (acid or alkaline) into a uranium-bearing aquifer and the pumping of the resulting solution th ...