A false positive is an error in binary classification in which a test result incorrectly indicates the presence of a condition (such as a disease when the disease is not present), while a false negative is the opposite error, where the test result incorrectly indicates the absence of a condition when it is actually present. These are the two kinds of errors in a binary test, in contrast to the two kinds of correct result (a and a ). They are also known in medicine as a false positive (or false negative) diagnosis, and in statistical classification as a false positive (or false negative) error. In statistical hypothesis testing, the analogous concepts are known as type I and type II errors, where a positive result corresponds to rejecting the null hypothesis, and a negative result corresponds to not rejecting the null hypothesis. The terms are often used interchangeably, but there are differences in detail and interpretation due to the differences between medical testing and statistical hypothesis testing. A false positive error, or false positive, is a result that indicates a given condition exists when it does not. For example, a pregnancy test which indicates a woman is pregnant when she is not, or the conviction of an innocent person. A false positive error is a type I error where the test is checking a single condition, and wrongly gives an affirmative (positive) decision. However it is important to distinguish between the type 1 error rate and the probability of a positive result being false. The latter is known as the false positive risk (see Ambiguity in the definition of false positive rate, below). A false negative error, or false negative, is a test result which wrongly indicates that a condition does not hold. For example, when a pregnancy test indicates a woman is not pregnant, but she is, or when a person guilty of a crime is acquitted, these are false negatives. The condition "the woman is pregnant", or "the person is guilty" holds, but the test (the pregnancy test or the trial in a court of law) fails to realize this condition, and wrongly decides that the person is not pregnant or not guilty.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (26)
CS-101: Advanced information, computation, communication I
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
CS-423: Distributed information systems
This course introduces the foundations of information retrieval, data mining and knowledge bases, which constitute the foundations of today's Web-based distributed information systems.
DH-406: Machine learning for DH
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
Afficher plus
Séances de cours associées (52)
Variables aléatoires discrètes: Tests médicaux
Explore les variables aléatoires discrètes, les probabilités communes et la qualité des tests médicaux en utilisant le théorème de Bayes.
Biométrie et jetons: avantages, authentification et raisonnement contradictoire
Explore la biométrie, les jetons, les processus d'authentification et le raisonnement contradictoire en ingénierie de la sécurité.
Essais d'hypothèses : état de la nature
Explore les tests d'hypothèse, en soulignant l'état de la nature et l'importance de choisir le test le plus puissant.
Afficher plus
Publications associées (100)
Concepts associés (15)
Prévalence
En épidémiologie, la prévalence est le rapport entre l'ensemble des cas présents ou passés d'un évènement ou d'une maladie et l'ensemble de la population exposée, à une date donnée. Ce rapport représente la proportion de personnes concernées par le phénomène et n'a pas d'unité. Prévalence et taux de prévalence sont deux termes équivalents. La prévalence est exprimée en pourcentage, en taux pour une population donnée, par exemple 100 000 individus (mais tout autre nombre est possible et doit être précisé).
False positive rate
In statistics, when performing multiple comparisons, a false positive ratio (also known as fall-out or false alarm ratio) is the probability of falsely rejecting the null hypothesis for a particular test. The false positive rate is calculated as the ratio between the number of negative events wrongly categorized as positive (false positives) and the total number of actual negative events (regardless of classification). The false positive rate (or "false alarm rate") usually refers to the expectancy of the false positive ratio.
Sensibilité et spécificité
En statistique, la sensibilité (ou sélectivité) d'un test mesure sa capacité à donner un résultat positif lorsqu'une hypothèse est vérifiée. Elle s'oppose à la spécificité, qui mesure la capacité d'un test à donner un résultat négatif lorsque l'hypothèse n'est pas vérifiée. Ces notions sont d'une importance majeure en épidémiologie et en , notamment au travers des courbes ROC. Cet article présente ces notions dans le cadre de l'application en épidémiologie.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.