**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# False positives and false negatives

Summary

A false positive is an error in binary classification in which a test result incorrectly indicates the presence of a condition (such as a disease when the disease is not present), while a false negative is the opposite error, where the test result incorrectly indicates the absence of a condition when it is actually present. These are the two kinds of errors in a binary test, in contrast to the two kinds of correct result (a and a ). They are also known in medicine as a false positive (or false negative) diagnosis, and in statistical classification as a false positive (or false negative) error.
In statistical hypothesis testing, the analogous concepts are known as type I and type II errors, where a positive result corresponds to rejecting the null hypothesis, and a negative result corresponds to not rejecting the null hypothesis. The terms are often used interchangeably, but there are differences in detail and interpretation due to the differences between medical testing and statisti

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related people (1)

Related concepts (16)

Type I and type II errors

In statistical hypothesis testing, a type I error is the mistaken rejection of an actually true null hypothesis (also known as a "false positive" finding or conclusion; example: "an innocent person i

Statistical significance

In statistical hypothesis testing, a result has statistical significance when a result at least as "extreme" would be very infrequent if the null hypothesis were true. M

Sensitivity and specificity

Sensitivity and specificity mathematically describe the accuracy of a test that reports the presence or absence of a condition. If individuals who have the condition are considered "positive" and th

Related publications (19)

Loading

Loading

Loading

Related units (1)

Related courses (21)

MICRO-455: Applied machine learning

Real-world engineering applications must cope with a large dataset of dynamic variables, which cannot be well approximated by classical or deterministic models. This course gives an overview of methods from Machine Learning for the analysis of non-linear, highly noisy and multi dimensional data

EE-515: Fundamentals of biosensors and electronic biochips

The labels "biosensor" and "eBiochip" have been employed to refer to the most diverse systems and in several fields of application. The course is meant not only to provide means to dig into this sea but also a thoughtful understanding of the detection principles and a design perspective.

BIO-449: Understanding statistics and experimental design

This course is neither an introduction to the mathematics of statistics nor an introduction to a statistics program such as R. The aim of the course is to understand statistics from its experimental design and to avoid common pitfalls of statistical reasoning. There is space to discuss ongoing work.

Related lectures (43)

When the question of who should get access to a communal resource first is uncertain, people often negotiate via nonverbal communication to resolve the conflict. What should a robot be programmed to do when such conflicts arise in Human-Robot Interaction? The answer to this question varies depending on the context of the situation. Learning from how humans use hesitation gestures to negotiate a solution in such conflict situations, we present a human-inspired design of nonverbal hesitation gestures that can be used for Human-Robot Negotiation. We extracted characteristic features of such negotiative hesitations humans use, and subsequently designed a trajectory generator (Negotiative Hesitation Generator) that can re-create the features in robot responses to conflicts. Our human-subjects experiment demonstrates the efficacy of the designed robot behaviour against non-negotiative stopping behaviour of a robot. With positive results from our human-robot interaction experiment, we provide a validated trajectory generator with which one can explore the dynamics of human-robot nonverbal negotiation of resource conflicts.

Buddhima Ruwanmini Gamlath Gamlath Ralalage, Mikhail Kapralov, Andreas Maggiori, Ola Nils Anders Svensson, David Wajc

The online matching problem was introduced by Karp, Vazirani and Vazirani nearly three decades ago. In that seminal work, they studied this problem in bipartite graphs with vertices arriving only on one side, and presented optimal deterministic and randomized algorithms for this setting. In comparison, more general arrival models, such as edge arrivals and general vertex arrivals, have proven more challenging and positive results are known only for various relaxations of the problem. In particular, even the basic question of whether randomization allows one to beat the trivially-optimal deterministic competitive ratio of 1/2 for either of these models was open. In this paper, we resolve this question for both these natural arrival models, and show the following. 1) For edge arrivals, randomization does not help no randomized algorithm is better than 1/2 competitive. 2) For general vertex arrivals, randomization helps - there exists a randomized (1/2+Omega (1))-competitive online matching algorithm.

This thesis describes the design and implementation of a framework that can track and identify multiple people in a crowded scene captured by multiple cameras. A people detector is initially employed to estimate the position of individuals. Those positions estimates are used by the face detector to prune the search space of possible face locations and minimize the false positives. A face classifier is employed to assign identities to the trajectories. Apart from recognizing the people in the scene, the face information is exploited by the tracker to minimize identity switches. Only sparse face recognitions are required to generate identity-preserving trajectories. Three face detectors are evaluated based on the project requirements. The face model of a person is described by Local Binary Pattern (histogram) features extracted from a number of patches of the face, captured by different cameras. The face model is shared between cameras meaning that one camera can recognize a face relying on patches captured by a different camera. Three classifiers are tested for the recognition task and an SVM is eventually employed. Due to the properties of the LBP, the recognition is robust to illumination changes and facial expressions. Also the SVM is trained from multiple views of the face of each person making the recognition also robust to pose changes. The system is integrated with two trackers, the state-of-the-art Multi-Commodity Network Flow tracker and a frame-by-frame Kalman tracker. We validate our method on two datasets generated for this purpose. The integration of face information with the people tracker demonstrates excellent performance and significantly improves the tracking results on crowded scenes, while providing the identities of the people in the scene.

2013