Summary
In mathematics, and in particular in group theory, a cyclic permutation is a permutation consisting of a single cycle. In some cases, cyclic permutations are referred to as cycles; if a cyclic permutation has k elements, it may be called a k-cycle. Some authors widen this definition to include permutations with fixed points in addition to at most one non-trivial cycle. In cycle notation, cyclic permutations are denoted by the list of their elements enclosed with parentheses, in the order to which they are permuted. For example, the permutation (1 3 2 4) that sends 1 to 3, 3 to 2, 2 to 4 and 4 to 1 is a 4-cycle, and the permutation (1 3 2)(4) that sends 1 to 3, 3 to 2, 2 to 1 and 4 to 4 is considered a 3-cycle by some authors. On the other hand, the permutation (1 3)(2 4) that sends 1 to 3, 3 to 1, 2 to 4 and 4 to 2 is not a cyclic permutation because it separately permutes the pairs {1, 3} and {2, 4}. The set of elements that are not fixed by a cyclic permutation is called the orbit of the cyclic permutation. Every permutation on finitely many elements can be decomposed into cyclic permutations on disjoint orbits. The individual cyclic parts of a permutation are also called cycles, thus the second example is composed of a 3-cycle and a 1-cycle (or fixed point) and the third is composed of two 2-cycles. There is not widespread consensus about the precise definition of a cyclic permutation. Some authors define a permutation σ of a set X to be cyclic if "successive application would take each object of the permuted set successively through the positions of all the other objects", or, equivalently, if its representation in cycle notation consists of a single cycle. Others provide a more permissive definition which allows fixed points. A nonempty subset S of X is a cycle of if the restriction of to S is a cyclic permutation of . If X is finite, its cycles are disjoint, and their union is X. That is, they form a partition, called the cycle decomposition of So, according to the more permissive definition, a permutation of X is cyclic if and only if X is its unique cycle.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood