Summary
In mathematics, when X is a finite set with at least two elements, the permutations of X (i.e. the bijective functions from X to X) fall into two classes of equal size: the even permutations and the odd permutations. If any total ordering of X is fixed, the parity (oddness or evenness) of a permutation of X can be defined as the parity of the number of inversions for σ, i.e., of pairs of elements x, y of X such that x < y and σ(x) > σ(y). The sign, signature, or signum of a permutation σ is denoted sgn(σ) and defined as +1 if σ is even and −1 if σ is odd. The signature defines the alternating character of the symmetric group Sn. Another notation for the sign of a permutation is given by the more general Levi-Civita symbol (εσ), which is defined for all maps from X to X, and has value zero for non-bijective maps. The sign of a permutation can be explicitly expressed as sgn(σ) = (−1)N(σ) where N(σ) is the number of inversions in σ. Alternatively, the sign of a permutation σ can be defined from its decomposition into the product of transpositions as sgn(σ) = (−1)m where m is the number of transpositions in the decomposition. Although such a decomposition is not unique, the parity of the number of transpositions in all decompositions is the same, implying that the sign of a permutation is well-defined. Consider the permutation σ of the set defined by and In one-line notation, this permutation is denoted 34521. It can be obtained from the identity permutation 12345 by three transpositions: first exchange the numbers 2 and 4, then exchange 3 and 5, and finally exchange 1 and 3. This shows that the given permutation σ is odd. Following the method of the cycle notation article, this could be written, composing from right to left, as There are many other ways of writing σ as a composition of transpositions, for instance σ = (1 5)(3 4)(2 4)(1 2)(2 3), but it is impossible to write it as a product of an even number of transpositions. The identity permutation is an even permutation.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood