Mitchell's embedding theorem, also known as the Freyd–Mitchell theorem or the full embedding theorem, is a result about ; it essentially states that these categories, while rather abstractly defined, are in fact of modules. This allows one to use element-wise diagram chasing proofs in these categories. The theorem is named after Barry Mitchell and Peter Freyd.
The precise statement is as follows: if A is a small abelian category, then there exists a ring R (with 1, not necessarily commutative) and a full, faithful and exact functor F: A → R-Mod (where the latter denotes the category of all left R-modules).
The functor F yields an equivalence between A and a of R-Mod in such a way that and cokernels computed in A correspond to the ordinary kernels and cokernels computed in R-Mod. Such an equivalence is necessarily additive.
The theorem thus essentially says that the objects of A can be thought of as R-modules, and the morphisms as R-linear maps, with kernels, cokernels, exact sequences and sums of morphisms being determined as in the case of modules. However, projective and injective objects in A do not necessarily correspond to projective and injective R-modules.
Let be the category of left exact functors from the abelian category to the . First we construct a contravariant embedding by for all , where is the covariant hom-functor, . The Yoneda Lemma states that is fully faithful and we also get the left exactness of very easily because is already left exact. The proof of the right exactness of is harder and can be read in Swan, Lecture Notes in Mathematics 76.
After that we prove that is an abelian category by using localization theory (also Swan). This is the hard part of the proof.
It is easy to check that the abelian category is an with a
In other words it is a and therefore has an injective cogenerator .
The endomorphism ring is the ring we need for the category of R-modules.
By we get another contravariant, exact and fully faithful embedding The composition is the desired covariant exact and fully faithful embedding.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, particularly homological algebra, an exact functor is a functor that preserves short exact sequences. Exact functors are convenient for algebraic calculations because they can be directly applied to presentations of objects. Much of the work in homological algebra is designed to cope with functors that fail to be exact, but in ways that can still be controlled. Let P and Q be abelian categories, and let F: P→Q be a covariant additive functor (so that, in particular, F(0) = 0).
In mathematics, especially homological algebra and other applications of theory, the five lemma is an important and widely used lemma about commutative diagrams. The five lemma is not only valid for abelian categories but also works in the , for example. The five lemma can be thought of as a combination of two other theorems, the four lemmas, which are to each other. Consider the following commutative diagram in any (such as the category of abelian groups or the category of vector spaces over a given field) or in the category of groups.
In mathematics, the Yoneda lemma is arguably the most important result in . It is an abstract result on functors of the type morphisms into a fixed object. It is a vast generalisation of Cayley's theorem from group theory (viewing a group as a miniature category with just one object and only isomorphisms). It allows the of any into a (contravariant set-valued functors) defined on that category. It also clarifies how the embedded category, of representable functors and their natural transformations, relates to the other objects in the larger functor category.
Covers sheaves and modules, including morphisms, sheafification, cocalization, and direct image properties.
The starting point for this project is the article of Kathryn Hess [11]. In this article, a homotopic version of monadic descent is developed. In the classical setting, one constructs a category D(𝕋) of coalgebras in the Eilenberg-Moore category of ...
Recently, there has been a lot of effort to represent words in continuous vector spaces. Those representations have been shown to capture both semantic and syntactic information about words. However, distributed representations of phrases remain a challeng ...
Let K be a global field of characteristic not 2. The embedding problem for maximal tori in a classical group G can be described in terms of algebras with involution. The aim of this paper is to give an explicit description of the obstruction group to the H ...