Concept

Mitchell's embedding theorem

Summary
Mitchell's embedding theorem, also known as the Freyd–Mitchell theorem or the full embedding theorem, is a result about ; it essentially states that these categories, while rather abstractly defined, are in fact of modules. This allows one to use element-wise diagram chasing proofs in these categories. The theorem is named after Barry Mitchell and Peter Freyd. The precise statement is as follows: if A is a small abelian category, then there exists a ring R (with 1, not necessarily commutative) and a full, faithful and exact functor F: A → R-Mod (where the latter denotes the category of all left R-modules). The functor F yields an equivalence between A and a of R-Mod in such a way that and cokernels computed in A correspond to the ordinary kernels and cokernels computed in R-Mod. Such an equivalence is necessarily additive. The theorem thus essentially says that the objects of A can be thought of as R-modules, and the morphisms as R-linear maps, with kernels, cokernels, exact sequences and sums of morphisms being determined as in the case of modules. However, projective and injective objects in A do not necessarily correspond to projective and injective R-modules. Let be the category of left exact functors from the abelian category to the . First we construct a contravariant embedding by for all , where is the covariant hom-functor, . The Yoneda Lemma states that is fully faithful and we also get the left exactness of very easily because is already left exact. The proof of the right exactness of is harder and can be read in Swan, Lecture Notes in Mathematics 76. After that we prove that is an abelian category by using localization theory (also Swan). This is the hard part of the proof. It is easy to check that the abelian category is an with a In other words it is a and therefore has an injective cogenerator . The endomorphism ring is the ring we need for the category of R-modules. By we get another contravariant, exact and fully faithful embedding The composition is the desired covariant exact and fully faithful embedding.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.