In mathematics, particularly homological algebra, an exact functor is a functor that preserves short exact sequences. Exact functors are convenient for algebraic calculations because they can be directly applied to presentations of objects. Much of the work in homological algebra is designed to cope with functors that fail to be exact, but in ways that can still be controlled.
Let P and Q be abelian categories, and let F: P→Q be a covariant additive functor (so that, in particular, F(0) = 0). We say that F is an exact functor if whenever
is a short exact sequence in P then
is a short exact sequence in Q. (The maps are often omitted and implied, and one says: "if 0→A→B→C→0 is exact, then 0→F(A)→F(B)→F(C)→0 is also exact".)
Further, we say that F is
left-exact if whenever 0→A→B→C→0 is exact then 0→F(A)→F(B)→F(C) is exact;
right-exact if whenever 0→A→B→C→0 is exact then F(A)→F(B)→F(C)→0 is exact;
half-exact if whenever 0→A→B→C→0 is exact then F(A)→F(B)→F(C) is exact. This is distinct from the notion of a topological half-exact functor.
If G is a contravariant additive functor from P to Q, we similarly define G to be
exact if whenever 0→A→B→C→0 is exact then 0→G(C)→G(B)→G(A)→0 is exact;
left-exact if whenever 0→A→B→C→0 is exact then 0→G(C)→G(B)→G(A) is exact;
right-exact if whenever 0→A→B→C→0 is exact then G(C)→G(B)→G(A)→0 is exact;
half-exact if whenever 0→A→B→C→0 is exact then G(C)→G(B)→G(A) is exact.
It is not always necessary to start with an entire short exact sequence 0→A→B→C→0 to have some exactness preserved. The following definitions are equivalent to the ones given above:
F is exact if and only if A→B→C exact implies F(A)→F(B)→F(C) exact;
F is left-exact if and only if 0→A→B→C exact implies 0→F(A)→F(B)→F(C) exact (i.e. if "F turns kernels into kernels");
F is right-exact if and only if A→B→C→0 exact implies F(A)→F(B)→F(C)→0 exact (i.e. if "F turns cokernels into cokernels");
G is left-exact if and only if A→B→C→0 exact implies 0→G(C)→G(B)→G(A) exact (i.e.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course will provide an introduction to model category theory, which is an abstract framework for generalizing homotopy theory beyond topological spaces and continuous maps. We will study numerous
Après une introduction à la théorie des catégories, nous appliquerons la théorie générale au cas particulier des groupes, ce qui nous permettra de bien mettre en perspective des notions telles que quo
Les systèmes non linéaires sont analysés en vue d'établir des lois de commande. On présente la stabilité au sens de Lyapunov, ainsi que des méthodes de commande géométrique (linéarisation exacte). Div
In algebra, given a ring R, the category of left modules over R is the whose are all left modules over R and whose morphisms are all module homomorphisms between left R-modules. For example, when R is the ring of integers Z, it is the same thing as the . The category of right modules is defined in a similar way. One can also define the category of bimodules over a ring R but that category is equivalent to the category of left (or right) modules over the enveloping algebra of R (or over the opposite of that).
Mitchell's embedding theorem, also known as the Freyd–Mitchell theorem or the full embedding theorem, is a result about ; it essentially states that these categories, while rather abstractly defined, are in fact of modules. This allows one to use element-wise diagram chasing proofs in these categories. The theorem is named after Barry Mitchell and Peter Freyd. The precise statement is as follows: if A is a small abelian category, then there exists a ring R (with 1, not necessarily commutative) and a full, faithful and exact functor F: A → R-Mod (where the latter denotes the category of all left R-modules).
In mathematics, the Ab has the abelian groups as and group homomorphisms as morphisms. This is the prototype of an : indeed, every can be embedded in Ab. The zero object of Ab is the trivial group {0} which consists only of its neutral element. The monomorphisms in Ab are the injective group homomorphisms, the epimorphisms are the surjective group homomorphisms, and the isomorphisms are the bijective group homomorphisms. Ab is a of Grp, the .
In diverse fields such as medical imaging, astrophysics, geophysics, or material study, a common challenge exists: reconstructing the internal volume of an object using only physical measurements taken from its exterior or surface. This scientific approach ...
We provide a new description of the complex computing the Hochschild homology of an -unitary -algebra as a derived tensor product such that: (1) there is a canonical morphism from it to the complex computing the cyclic homology of that was introduced by Ko ...
A correspondence functor is a functor from the category of finite sets and correspondences to the category of k-modules, where k is a commutative ring. By means of a suitably defined duality, new correspondence functors are constructed, having remarkable p ...