In mathematics, a classification theorem answers the classification problem "What are the objects of a given type, up to some equivalence?". It gives a non-redundant enumeration: each object is equivalent to exactly one class. A few issues related to classification are the following. The equivalence problem is "given two objects, determine if they are equivalent". A complete set of invariants, together with which invariants are solves the classification problem, and is often a step in solving it. A (together with which invariants are realizable) solves both the classification problem and the equivalence problem. A canonical form solves the classification problem, and is more data: it not only classifies every class, but provides a distinguished (canonical) element of each class. There exist many classification theorems in mathematics, as described below. Classification of Euclidean plane isometries Classification theorems of surfaces Classification of two-dimensional closed manifolds Enriques–Kodaira classification of algebraic surfaces (complex dimension two, real dimension four) Nielsen–Thurston classification which characterizes homeomorphisms of a compact surface Thurston's eight model geometries, and the geometrization conjecture Berger classification Classification of Riemannian symmetric spaces Classification of 3-dimensional lens spaces Classification of manifolds Classification of finite simple groups Classification of Abelian groups Classification of Finitely generated abelian group Classification of Rank 3 permutation group Classification of 2-transitive permutation groups Artin–Wedderburn theorem — a classification theorem for semisimple rings Classification of Clifford algebras Classification of low-dimensional real Lie algebras Bianchi classification ADE classification Langlands classification Finite-dimensional vector spaces (by dimension) Rank–nullity theorem (by rank and nullity) Structure theorem for finitely generated modules over a principal ideal domain Jordan normal form Sylvester's law of

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.