Concept

Excess-3

Excess-3, 3-excess or 10-excess-3 binary code (often abbreviated as XS-3, 3XS or X3), shifted binary or Stibitz code (after George Stibitz, who built a relay-based adding machine in 1937) is a self-complementary binary-coded decimal (BCD) code and numeral system. It is a biased representation. Excess-3 code was used on some older computers as well as in cash registers and hand-held portable electronic calculators of the 1970s, among other uses. Biased codes are a way to represent values with a balanced number of positive and negative numbers using a pre-specified number N as a biasing value. Biased codes (and Gray codes) are non-weighted codes. In excess-3 code, numbers are represented as decimal digits, and each digit is represented by four bits as the digit value plus 3 (the "excess" amount): The smallest binary number represents the smallest value (). The greatest binary number represents the largest value (). To encode a number such as 127, one simply encodes each of the decimal digits as above, giving (0100, 0101, 1010). Excess-3 arithmetic uses different algorithms than normal non-biased BCD or binary positional system numbers. After adding two excess-3 digits, the raw sum is excess-6. For instance, after adding 1 (0100 in excess-3) and 2 (0101 in excess-3), the sum looks like 6 (1001 in excess-3) instead of 3 (0110 in excess-3). In order to correct this problem, after adding two digits, it is necessary to remove the extra bias by subtracting binary 0011 (decimal 3 in unbiased binary) if the resulting digit is less than decimal 10, or subtracting binary 1101 (decimal 13 in unbiased binary) if an overflow (carry) has occurred. (In 4-bit binary, subtracting binary 1101 is equivalent to adding 0011 and vice versa.) The primary advantage of excess-3 coding over non-biased coding is that a decimal number can be nines' complemented (for subtraction) as easily as a binary number can be ones' complemented: just by inverting all bits. Also, when the sum of two excess-3 digits is greater than 9, the carry bit of a 4-bit adder will be set high.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.