Summary
Ontology alignment, or ontology matching, is the process of determining correspondences between concepts in ontologies. A set of correspondences is also called an alignment. The phrase takes on a slightly different meaning, in computer science, cognitive science or philosophy. For computer scientists, concepts are expressed as labels for data. Historically, the need for ontology alignment arose out of the need to integrate heterogeneous databases, ones developed independently and thus each having their own data vocabulary. In the Semantic Web context involving many actors providing their own ontologies, ontology matching has taken a critical place for helping heterogeneous resources to interoperate. Ontology alignment tools find classes of data that are semantically equivalent, for example, "truck" and "lorry". The classes are not necessarily logically identical. According to Euzenat and Shvaiko (2007), there are three major dimensions for similarity: syntactic, external, and semantic. Coincidentally, they roughly correspond to the dimensions identified by Cognitive Scientists below. A number of tools and frameworks have been developed for aligning ontologies, some with inspiration from Cognitive Science and some independently. Ontology alignment tools have generally been developed to operate on database schemas, XML schemas, taxonomies, formal languages, entity-relationship models, dictionaries, and other label frameworks. They are usually converted to a graph representation before being matched. Since the emergence of the Semantic Web, such graphs can be represented in the Resource Description Framework line of languages by triples of the form , as illustrated in the Notation 3 syntax. In this context, aligning ontologies is sometimes referred to as "ontology matching". The problem of Ontology Alignment has been tackled recently by trying to compute matching first and mapping (based on the matching) in an automatic fashion. Systems like DSSim, X-SOM or COMA++ obtained at the moment very high precision and recall.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (34)
Related concepts (2)
Data integration
Data integration involves combining data residing in different sources and providing users with a unified view of them. This process becomes significant in a variety of situations, which include both commercial (such as when two similar companies need to merge their databases) and scientific (combining research results from different bioinformatics repositories, for example) domains. Data integration appears with increasing frequency as the volume (that is, big data) and the need to share existing data explodes.
Semantic Web
The Semantic Web, sometimes known as Web 3.0 (not to be confused with Web3), is an extension of the World Wide Web through standards set by the World Wide Web Consortium (W3C). The goal of the Semantic Web is to make Internet data machine-readable. To enable the encoding of semantics with the data, technologies such as Resource Description Framework (RDF) and Web Ontology Language (OWL) are used. These technologies are used to formally represent metadata. For example, ontology can describe concepts, relationships between entities, and categories of things.