Knowledge representation and reasoning (KRR, KR&R, KR2) is the field of artificial intelligence (AI) dedicated to representing information about the world in a form that a computer system can use to solve complex tasks such as diagnosing a medical condition or having a dialog in a natural language. Knowledge representation incorporates findings from psychology about how humans solve problems and represent knowledge in order to design formalisms that will make complex systems easier to design and build. Knowledge representation and reasoning also incorporates findings from logic to automate various kinds of reasoning, such as the application of rules or the relations of sets and subsets.
Examples of knowledge representation formalisms include semantic nets, systems architecture, frames, rules, and ontologies. Examples of automated reasoning engines include inference engines, theorem provers, and classifiers.
The earliest work in computerized knowledge representation was focused on general problem-solvers such as the General Problem Solver (GPS) system developed by Allen Newell and Herbert A. Simon in 1959. These systems featured data structures for planning and decomposition. The system would begin with a goal. It would then decompose that goal into sub-goals and then set out to construct strategies that could accomplish each subgoal.
In these early days of AI, general search algorithms such as A* were also developed. However, the amorphous problem definitions for systems such as GPS meant that they worked only for very constrained toy domains (e.g. the "blocks world"). In order to tackle non-toy problems, AI researchers such as Ed Feigenbaum and Frederick Hayes-Roth realized that it was necessary to focus systems on more constrained problems.
These efforts led to the cognitive revolution in psychology and to the phase of AI focused on knowledge representation that resulted in expert systems in the 1970s and 80s, production systems, frame languages, etc.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In artificial intelligence, an expert system is a computer system emulating the decision-making ability of a human expert. Expert systems are designed to solve complex problems by reasoning through bodies of knowledge, represented mainly as if–then rules rather than through conventional procedural code. The first expert systems were created in the 1970s and then proliferated in the 1980s. Expert systems were among the first truly successful forms of artificial intelligence (AI) software.
In computing, linked data is structured data which is interlinked with other data so it becomes more useful through semantic queries. It builds upon standard Web technologies such as HTTP, RDF and URIs, but rather than using them to serve web pages only for human readers, it extends them to share information in a way that can be read automatically by computers. Part of the vision of linked data is for the Internet to become a global database.
DBpedia (from "DB" for "database") is a project aiming to extract structured content from the information created in the Wikipedia project. This structured information is made available on the World Wide Web. DBpedia allows users to semantically query relationships and properties of Wikipedia resources, including links to other related datasets. In 2008, Tim Berners-Lee described DBpedia as one of the most famous parts of the decentralized Linked Data effort.
Natural language processing (NLP) is an interdisciplinary subfield of linguistics and computer science. It is primarily concerned with processing natural language datasets, such as text corpora or speech corpora, using either rule-based or probabilistic (i.e. statistical and, most recently, neural network-based) machine learning approaches. The goal is a computer capable of "understanding" the contents of documents, including the contextual nuances of the language within them.
A relational database is a (most commonly digital) database based on the relational model of data, as proposed by E. F. Codd in 1970. A system used to maintain relational databases is a relational database management system (RDBMS). Many relational database systems are equipped with the option of using SQL (Structured Query Language) for querying and updating the database. The term "relational database" was first defined by E. F. Codd at IBM in 1970. Codd introduced the term in his research paper "A Relational Model of Data for Large Shared Data Banks".
Knowledge management (KM) is the collection of methods relating to creating, sharing, using and managing the knowledge and information of an organization. It refers to a multidisciplinary approach to achieve organizational objectives by making the best use of knowledge. An established discipline since 1991, KM includes courses taught in the fields of business administration, information systems, management, library, and information science. Other fields may contribute to KM research, including information and media, computer science, public health and public policy.
This course introduces the foundations of information retrieval, data mining and knowledge bases, which constitute the foundations of today's Web-based distributed information systems.
This course gives an introduction to the fundamental concepts and methods of the Digital Humanities, both from a theoretical and applied point of view. The course introduces the Digital Humanities cir
Introduction aux techniques de l'Intelligence Artificielle, complémentée par des exercices de programmation qui montrent les algorithmes et des exemples de leur application à des problèmes pratiques.
Industrial information integration engineering (IIIE) is an interdisciplinary field to facilitate the industrial information integration process. In the age of complex and large-scale systems, model-based systems engineering (MBSE) is widely adopted in ind ...
The aircraft assembly system is highly complex involving different stakeholders from multiple domains. The design of such a system requires comprehensive consideration of various industrial scenarios aiming to optimize key performance indicators. Tradition ...
Traditional martial arts are treasures of humanity's knowledge and critical carriers of sociocultural memories throughout history. However, such treasured practices have encountered various challenges in knowledge transmission and now feature many entries ...
Explores the concept of Knowledge Graphs and their role in data integration and semantic understanding, showcasing real-world examples and applications.