Summary
Large-scale brain networks (also known as intrinsic brain networks) are collections of widespread brain regions showing functional connectivity by statistical analysis of the fMRI BOLD signal or other recording methods such as EEG, PET and MEG. An emerging paradigm in neuroscience is that cognitive tasks are performed not by individual brain regions working in isolation but by networks consisting of several discrete brain regions that are said to be "functionally connected". Functional connectivity networks may be found using algorithms such as cluster analysis, spatial independent component analysis (ICA), seed based, and others. Synchronized brain regions may also be identified using long-range synchronization of the EEG, MEG, or other dynamic brain signals. The set of identified brain areas that are linked together in a large-scale network varies with cognitive function. When the cognitive state is not explicit (i.e., the subject is at "rest"), the large-scale brain network is a resting state network (RSN). As a physical system with graph-like properties, a large-scale brain network has both nodes and edges and cannot be identified simply by the co-activation of brain areas. In recent decades, the analysis of brain networks was made feasible by advances in imaging techniques as well as new tools from graph theory and dynamical systems. Large-scale brain networks are identified by their function and provide a coherent framework for understanding cognition by offering a neural model of how different cognitive functions emerge when different sets of brain regions join together as self-organized coalitions. The number and composition of the coalitions will vary with the algorithm and parameters used to identify them. In one model, there is only the default mode network and the task-positive network, but most current analyses show several networks, from a small handful to 17. The most common and stable networks are enumerated below. The regions participating in a functional network may be dynamically reconfigured.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (7)
BIO-641: Data Science applications in Neuroimaging
Attention: it is also necessary to register at https://tinyurl.com/edsan2022 in addition to signing up for the course. The "Examples of Data Science Applications in Neuroimaging" (EDSAN) course i
EE-619: Advanced topics in network neuroscience
The main goal of this course is to give the student a solid introduction into approaches, methods, and tools for brain network analysis. The student will learn about principles of network science and
NX-421: Neural signals and signal processing
Understanding, processing, and analysis of signals and images obtained from the central and peripheral nervous system
Show more
Related lectures (50)
Observing the Brain: Basics of Neuroimaging
Explores neuroimaging basics, covering brain observation at different scales and mapping brain networks with various techniques.
Dynamic Functional Connectivity: Fundamentals
Covers the fundamentals of dynamic functional connectivity in the human brain, exploring challenges and analysis methods.
Levels of Consciousness and Brain Connectivity
Discusses the definitions and assessment of consciousness levels through neuroimaging and brain networks, focusing on connICA for mapping functional connectome traits.
Show more
Related publications (229)

Thalamic contributions to psychosis susceptibility: Evidence from co-activation patterns accounting for intra-seed spatial variability (μCAPs)

Dimitri Nestor Alice Van De Ville, Thomas William Arthur Bolton, Farnaz Delavari, Nada Kojovic

The temporal variability of the thalamus in functional networks may provide valuable insights into the pathophysiology of schizophrenia. To address the complexity of the role of the thalamic nuclei in psychosis, we introduced micro-co-activation patterns ( ...
Wiley2024
Show more
Related concepts (5)
Gamma wave
A gamma wave or gamma rhythm is a pattern of neural oscillation in humans with a frequency between 25 and 140 Hz, the 40 Hz point being of particular interest. Gamma rhythms are correlated with large scale brain network activity and cognitive phenomena such as working memory, attention, and perceptual grouping, and can be increased in amplitude via meditation or neurostimulation. Altered gamma activity has been observed in many mood and cognitive disorders such as Alzheimer's disease, epilepsy, and schizophrenia.
Neural oscillation
Neural oscillations, or brainwaves, are rhythmic or repetitive patterns of neural activity in the central nervous system. Neural tissue can generate oscillatory activity in many ways, driven either by mechanisms within individual neurons or by interactions between neurons. In individual neurons, oscillations can appear either as oscillations in membrane potential or as rhythmic patterns of action potentials, which then produce oscillatory activation of post-synaptic neurons.
Electroencephalography
Electroencephalography (EEG) is a method to record an electrogram of the spontaneous electrical activity of the brain. The biosignals detected by EEG have been shown to represent the postsynaptic potentials of pyramidal neurons in the neocortex and allocortex. It is typically non-invasive, with the EEG electrodes placed along the scalp (commonly called "scalp EEG") using the International 10–20 system, or variations of it. Electrocorticography, involving surgical placement of electrodes, is sometimes called "intracranial EEG".
Show more