The carrying capacity of an environment is the maximum population size of a biological species that can be sustained by that specific environment, given the food, habitat, water, and other resources available. The carrying capacity is defined as the environment's maximal load, which in population ecology corresponds to the population equilibrium, when the number of deaths in a population equals the number of births (as well as immigration and emigration). The effect of carrying capacity on population dynamics is modelled with a logistic function. Carrying capacity is applied to the maximum population an environment can support in ecology, agriculture and fisheries. The term carrying capacity has been applied to a few different processes in the past before finally being applied to population limits in the 1950s. The notion of carrying capacity for humans is covered by the notion of sustainable population.
At the global scale, scientific data indicates that humans are living beyond the carrying capacity of planet Earth and that this cannot continue indefinitely. This scientific evidence comes from many sources. It was presented in detail in the Millennium Ecosystem Assessment of 2005, a collaborative effort involving more than 1,360 experts worldwide. More recent, detailed accounts are provided by ecological footprint accounting, and interdisciplinary research on planetary boundaries to safe human use of the biosphere. The Sixth Assessment Report on Climate Change from the IPCC and the First Assessment Report on Biodiversity and Ecosystem Services by the IPBES, large international summaries of the state of scientific knowledge regarding climate disruption and biodiversity loss, also support this view.
An early detailed examination of global limits was published in the 1972 book Limits to Growth, which has prompted follow-up commentary and analysis. A 2012 review in Nature by 22 international researchers expressed concerns that the Earth may be "approaching a state shift" in which the biosphere may become less hospitable to human life and in which human carrying capacity may diminish.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Population growth is the increase in the number of people in a population or dispersed group. Actual global human population growth amounts to around 83 million annually, or 1.1% per year. The global population has grown from 1 billion in 1800 to 7.9 billion in 2020. The UN projected population to keep growing, and estimates have put the total population at 8.6 billion by mid-2030, 9.8 billion by mid-2050 and 11.2 billion by 2100.
Sustainability is a social goal for people to co-exist on Earth over a long time. Specific definitions of this term are disputed and have varied with literature, context, and time. Experts often describe sustainability as having three dimensions (or pillars): environmental, economic, and social, and many publications emphasize the environmental dimension. In everyday use, sustainability often focuses on countering major environmental problems, including climate change, loss of biodiversity, loss of ecosystem services, land degradation, and air and water pollution.
Biodiversity loss includes the worldwide extinction of different species, as well as the local reduction or loss of species in a certain habitat, resulting in a loss of biological diversity. The latter phenomenon can be temporary or permanent, depending on whether the environmental degradation that leads to the loss is reversible through ecological restoration/ecological resilience or effectively permanent (e.g. through land loss).
Ce cours présente les principes du fonctionnement, du dimensionnement et de la conception des structures. L'approche est basée sur une utilisation de la statique graphique et traite en particulier des
L'art des structures propose une découverte du fonctionnement des structures porteuses, telles que les bâtiments, les toitures ou les ponts. Ce cours présente les principes du dimensionnement et les s
Examines the impact of population growth on prosperity, innovation, and planetary resources, highlighting the complex interplay between demographic trends and economic development.
This course examines growth from various angles: economic growth, growth in the use of resources, need for growth, limits to growth, sustainable growth, and, if time permits, population growth and gro
This course is an introduction to economic theory applied to environmental issues. It presents the methods used to assess environmental impacts and natural resources as well as environmental regulatio
This introduction to Enviromental Engineering is meant to show the students how upcoming courses in mathematics, physics, chemistry, biology and other areas will be used to gain a scientific understan
A travers l’étude du territoire traversé par le fleuve Rhône, la recherche doctorale « Quartiers rhodaniens en transition » propose le concept de nouveaux équilibres ville-fleuve, entendus comme des stratégies urbaines résilientes dans un cadre de transiti ...
A brief critique of the evolution of ecological perspectives surrounding the current environmental crises in the age of climate age and Anthropogenic impacts is highlighted across the inter-disciplinary fields of landscape, urbanism, and ecology. First, re ...
Springer Cham2023
, ,
In einer Restwasserstrecke der Saane wurde 2016 zur Sanierung der kolmatierten Gewässersohle und zur Aufwertung der Lebensräume ein künstliches Hochwasser ausgelöst und mit einer Sedimentzugabe gekoppelt. Die mittelfristigen Wirkungen der Sedimentzugabe wu ...