A superhabitable planet is a hypothetical type of exoplanet or exomoon that may be better suited than Earth for the emergence and evolution of life. The concept was introduced in 2014 by René Heller and John Armstrong, who have criticized the language used in the search for habitable planets and proposed clarifications. According to Heller and Armstrong, knowing whether or not a planet is in its host star's habitable zone (HZ) is insufficient to determine its habitability: It is not clear why Earth should offer the most suitable physicochemical parameters to living organisms, as "planets could be non-Earth-like, yet offer more suitable conditions for the emergence and evolution of life than Earth did or does." While still assuming that life requires water, they hypothesize that Earth may not represent the optimal planetary habitability conditions for maximum biodiversity; in other words, they define a superhabitable world as a terrestrial planet or moon that could support more diverse flora and fauna than there are on Earth, as it would empirically show that its environment is more hospitable to life. Heller and Armstrong also point out that not all rocky planets in a habitable zone (HZ) may be habitable, and that tidal heating can render terrestrial or icy worlds habitable beyond the stellar HZ, such as in Europa's internal ocean. The authors propose that in order to identify a habitable—or superhabitable—planet, a characterization concept is required that is biocentric rather than geo- or anthropocentric. Heller and Armstrong proposed to establish a profile for exoplanets according to stellar type, mass and location in their planetary system, among other features. According to these authors, such superhabitable worlds would likely be larger, warmer, and older than Earth, and orbiting K-type main-sequence stars. Heller and Armstrong proposed that a series of basic characteristics are required to classify an exoplanet or exomoon as superhabitable; for size, it is required to be about 2 Earth masses, and 1.
Marie Estelle Solange Violay, Michael Heap