A quantum Turing machine (QTM) or universal quantum computer is an abstract machine used to model the effects of a quantum computer. It provides a simple model that captures all of the power of quantum computation—that is, any quantum algorithm can be expressed formally as a particular quantum Turing machine. However, the computationally equivalent quantum circuit is a more common model.
Quantum Turing machines can be related to classical and probabilistic Turing machines in a framework based on transition matrices. That is, a matrix can be specified whose product with the matrix representing a classical or probabilistic machine provides the quantum probability matrix representing the quantum machine. This was shown by Lance Fortnow.
A way of understanding the quantum Turing machine (QTM) is that it generalizes the classical Turing machine (TM) in the same way that the quantum finite automaton (QFA) generalizes the deterministic finite automaton (DFA). In essence, the internal states of a classical TM are replaced by pure or mixed states in a Hilbert space; the transition function is replaced by a collection of unitary matrices that map the Hilbert space to itself.
That is, a classical Turing machine is described by a 7-tuple .
For a three-tape quantum Turing machine (one tape holding the input, a second tape holding intermediate calculation results, and a third tape holding output):
The set of states is replaced by a Hilbert space.
The tape alphabet symbols are likewise replaced by a Hilbert space (usually a different Hilbert space than the set of states).
The blank symbol is an element of the Hilbert space.
The input and output symbols are usually taken as a discrete set, as in the classical system; thus, neither the input nor output to a quantum machine need be a quantum system itself.
The transition function is a generalization of a transition monoid and is understood to be a collection of unitary matrices that are automorphisms of the Hilbert space .
The initial state may be either a mixed state or a pure state.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course introduces the paradigm of quantum computation in an axiomatic way. We introduce the notion of quantum bit, gates, circuits and we treat the most important quantum algorithms. We also touch
This lecture describes advanced concepts and applications of quantum optics. It emphasizes the connection with ongoing research, and with the fast growing field of quantum technologies. The topics cov
This course constitutes an introduction to theory of computation. It discusses the basic theoretical models of computing (finite automata, Turing machine), as well as, provides a solid and mathematica
In quantum computing and specifically the quantum circuit model of computation, a quantum logic gate (or simply quantum gate) is a basic quantum circuit operating on a small number of qubits. They are the building blocks of quantum circuits, like classical logic gates are for conventional digital circuits. Unlike many classical logic gates, quantum logic gates are reversible. It is possible to perform classical computing using only reversible gates.
Theoretical computer science (TCS) is a subset of general computer science and mathematics that focuses on mathematical aspects of computer science such as the theory of computation, lambda calculus, and type theory. It is difficult to circumscribe the theoretical areas precisely. The ACM's Special Interest Group on Algorithms and Computation Theory (SIGACT) provides the following description: History of computer science While logical inference and mathematical proof had existed previously, in 1931 Kurt Gödel proved with his incompleteness theorem that there are fundamental limitations on what statements could be proved or disproved.
A quantum computer is a computer that exploits quantum mechanical phenomena. At small scales, physical matter exhibits properties of both particles and waves, and quantum computing leverages this behavior, specifically quantum superposition and entanglement, using specialized hardware that supports the preparation and manipulation of quantum states. Classical physics cannot explain the operation of these quantum devices, and a scalable quantum computer could perform some calculations exponentially faster than any modern "classical" computer.
Universal quantum algorithms that prepare arbitrary n-qubit quantum states require O(2n) gate complexity. The complexity can be reduced by considering specific families of quantum states depending on the task at hand. In particular, multipartite quantum st ...
The exceptional points (EPs) of non-Hermitian Hamiltonians (NHHs) are spectral degeneracies associated with coalescing eigenvalues and eigenvectors, which are associated with remarkable dynamical properties. These EPs can be generated experimentally in ope ...
AMER PHYSICAL SOC2022
, , ,
Harnessing quantum randomness for the generation of random numbers is an important concept crucial for information security and many other computer-related applications. Quantum random number generators (QRNGs) are evolving from bulky, slow, and expensive ...