In differential topology, sphere eversion is the process of turning a sphere inside out in a three-dimensional space (the word eversion means "turning inside out"). Remarkably, it is possible to smoothly and continuously turn a sphere inside out in this way (allowing self-intersections of the sphere's surface) without cutting or tearing it or creating any crease. This is surprising, both to non-mathematicians and to those who understand regular homotopy, and can be regarded as a veridical paradox; that is something that, while being true, on first glance seems false.
More precisely, let
be the standard embedding; then there is a regular homotopy of immersions
such that ƒ0 = ƒ and ƒ1 = −ƒ.
An existence proof for crease-free sphere eversion was first created by .
It is difficult to visualize a particular example of such a turning, although some digital animations have been produced that make it somewhat easier. The first example was exhibited through the efforts of several mathematicians, including Arnold S. Shapiro and Bernard Morin, who was blind. On the other hand, it is much easier to prove that such a "turning" exists, and that is what Smale did.
Smale's graduate adviser Raoul Bott at first told Smale that the result was obviously wrong .
His reasoning was that the degree of the Gauss map must be preserved in such "turning"—in particular it follows that there is no such turning of S1 in R2. But the degrees of the Gauss map for the embeddings f and −f in R3 are both equal to 1, and do not have opposite sign as one might incorrectly guess. The degree of the Gauss map of all immersions of S2 in R3 is 1, so there is no obstacle. The term "veridical paradox" applies perhaps more appropriately at this level: until Smale's work, there was no documented attempt to argue for or against the eversion of S2, and later efforts are in hindsight, so there never was a historical paradox associated with sphere eversion, only an appreciation of the subtleties in visualizing it by those confronting the idea for the first time.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Within the context of tele-presence and immersion for piloting light aircraft, knowledge about the surrounding wind offers useful information for piloting purposes. Rendering wind in virtual simulation or tele-presence application has been used still the e ...
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an -dimensional manifold, or -manifold for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to an open subset of -dimensional Euclidean space. One-dimensional manifolds include lines and circles, but not lemniscates. Two-dimensional manifolds are also called surfaces. Examples include the plane, the sphere, and the torus, and also the Klein bottle and real projective plane.
In mathematics, an immersion is a differentiable function between differentiable manifolds whose differential pushforward is everywhere injective. Explicitly, f : M → N is an immersion if is an injective function at every point p of M (where TpX denotes the tangent space of a manifold X at a point p in X). Equivalently, f is an immersion if its derivative has constant rank equal to the dimension of M: The function f itself need not be injective, only its derivative must be. A related concept is that of an embedding.
In geometry, minimax eversions are a class of sphere eversions, constructed by using half-way models. It is a variational method, and consists of special homotopies (they are shortest paths with respect to Willmore energy); contrast with Thurston's corrugations, which are generic. The original method of half-way models was not optimal: the regular homotopies passed through the midway models, but the path from the round sphere to the midway model was constructed by hand, and was not gradient ascent/descent.